Acoustic Metamaterials and Phononic Crystals pp 329-372 | Cite as
Phononic Band Structures and Transmission Coefficients: Methods and Approaches
Abstract
The purpose of this chapter is first to recall some fundamental notions from the theory of crystalline solids (such as direct lattice, unit cell, reciprocal lattice, vectors of the reciprocal lattice, Brillouin zone, etc.) applied to phononic crystals and second to present the most common theoretical tools that have been developed by several authors to study elastic wave propagation in phononic crystals and acoustic metamaterials. These theoretical tools are the plane wave expansion method, the finite-difference time domain method, the multiple scattering theory, and the finite element method. Furthermore, a model reduction method based on Bloch modal analysis is presented. This method applies on top of any of the numerical methods mentioned above. Its purpose is to significantly reduce the size of the final matrix model and hence enable the computation of the band structure at a very fast rate without any noticeable loss in accuracy. The intention in this chapter is to give to the reader the basic elements necessary for the development of his/her own calculation codes. The chapter does not contain all the details of the numerical methods, and the reader is advised to refer to the large bibliography already devoted to this topic.
Keywords
Reciprocal Lattice Band Structure Calculation Phononic Crystal Plane Wave Expansion Bravais LatticeReferences
- 1.N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)Google Scholar
- 2.M. Sigalas, E.N. Economou, Band structure of elastic waves in two dimensional systems. Solid State Commun. 86, 141–143 (1993)CrossRefGoogle Scholar
- 3.J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzynskiand, P.A. Deymier, Acoustic band gaps in fibre composite materials of boronnitride structure. J. Phys. Condens Matter 9, 7327–7341 (1997)CrossRefGoogle Scholar
- 4.ZhilinHou, Xiujun Fu, and Youyan Liu, Singularity of the Bloch theorem in the fluid/solid phononic crystal. Phys. Rev. B 73, 024304–024308 (2006)Google Scholar
- 5.J.O. Vasseur, P.A. Deymier, A. Khelif, P. Lambin, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, N. Fettouhi, J. Zemmouri, Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: a theoretical and experimental study. Phys. Rev. E 65, 056608 (2002)CrossRefGoogle Scholar
- 6.B. Manzanares-Martinez, F. Ramos-Mendieta, Surface elastic waves in solid composites of two-dimensional periodicity. Phys. Rev. B 68, 134303 (2003)CrossRefGoogle Scholar
- 7.C. Goffaux, J.P. Vigneron, Theoretical study of a tunable phononic band gap system. Phys. Rev. B 64, 075118 (2001)CrossRefGoogle Scholar
- 8.Y. Tanaka, Y. Tomoyasu, S.I. Tamura, Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch. Phys. Rev. B 62, 7387 (2000)CrossRefGoogle Scholar
- 9.J.O. Vasseur, P.A. Deymier, B. Djafari-Rouhani, Y. Pennec, A.-C. Hladky-Hennion, Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates. Phys. Rev. B 77, 085415 (2008)CrossRefGoogle Scholar
- 10.C. Charles, B. Bonello, F. Ganot, Propagation of guided elastic waves in 2D phononic crystals. Ultrasonics 44, 1209(E) (2006)CrossRefGoogle Scholar
- 11.C. Croënne, E.D. Manga, B. Morvan, A. Tinel, B. Dubus, J. Vasseur, A.-C. Hladky-Hennion, Negative refraction of longitudinal waves in a two-dimensional solid-solid phononic crystal. Phys. Rev. B 83, 054301 (2011)CrossRefGoogle Scholar
- 12.P. Lambin, A. Khelif, J.O. Vasseur, L. Dobrzynski, B. Djafari-Rouhani, Stopping of acoustic waves by sonic polymer-fluid composites. Phys. Rev. E 63, 066605 (2001)CrossRefGoogle Scholar
- 13.G. Mur, Absorbing boundary conditions for the finite difference approximation of the time-domain electromagnetic field equations. IEEE Trans. Electromagn. Compatibility 23, 377 (1981)CrossRefGoogle Scholar
- 14.A. Taflove, Computational electrodynamics: the finite difference time domain method (Artech House, Boston, 1995)Google Scholar
- 15.B. Merheb, P.A. Deymier, M. Jain, M. Aloshyna-Lesuffleur, S. Mohanty, A. Berker, R.W. Greger, Elastic and viscoelastic effects in rubber/air acoustic band gap structures: a theoretical and experimental study. J. Appl. Phys. 104, 064913 (2008)CrossRefGoogle Scholar
- 16.B. Merheb, P.A. Deymier, K. Muralidharan, J. Bucay, M. Jain, M. Aloshyna-Lesuffleur, R.W. Greger, S. Mohanty, A. Berker, Viscoelastic effect on acoustic band gaps in polymer-fluid composites. Model. Simul. Mater. Sci. Eng. 17, 075013 (2009)CrossRefGoogle Scholar
- 17.M. Kafesaki, E.N. Economou, Multiple-scattering theory for three-dimensional periodic acoustic composites. Phys. Rev. B. 60, 11993 (1999)CrossRefGoogle Scholar
- 18.Z. Liu, C.T. Chan, P. Sheng, A.L. Goertzen, J.H. Page, Elastic wave scattering by periodic structures of spherical objects: theory and experiment. Phys. Rev. B. 62, 2446 (2000)CrossRefGoogle Scholar
- 19.I.E. Psarobas, N. Stefanou, A. Modinos, Scattering of elastic waves by periodic arrays of spherical bodies. Phys. Rev. B. 62, 278 (2000)CrossRefGoogle Scholar
- 20.J. Mei, Z. Liu, J. Shi, D. Tian, Theory for elastic wave scattering by a two-dimensional periodical array of cylinders: an ideal approach for band-structure calculations. Phys. Rev. B 67, 245107 (2003)CrossRefGoogle Scholar
- 21.P. Langlet, A.-C. Hladky-Hennion, J.N. Decarpigny, Analysis of the propagation of plane acoustic waves in passive periodic materials using the finite element method. J. Acoust. Soc. Am. 95, 1792 (1995)Google Scholar
- 22.J.O. Vasseur, A.-C. Hladky-Hennion, B. Djafari-Rouhani, F. Duval, B. Dubus, Y. Pennec, Waveguiding in two-dimensional piezoelectric phononic crystal plates. J. Appl. Phys. 101, 114904 (2007)CrossRefGoogle Scholar
- 23.L. Brillouin, Wave Propagation in Periodic Structures (Dover, New York, 1953)Google Scholar
- 24.K. Busch, G. von Freymann, S. Linden, S.F. Mingaleev, L. Tkeshelashvili, M. Wegener, Periodic nanostructures for photonics. Phys. Rep. 444, 101–202 (2007)CrossRefGoogle Scholar
- 25.O. Sigmund, J.S. Jensen, Systematic design of phononic band-gap materials and structures by topology optimization. Philos. Trans. R. Soc. Lond. A361, 1001–1019 (2003)Google Scholar
- 26.O.R. Bilal, M.I. Hussein, Ultrawidephononic band gap for combined in-plane and out-of-plane waves. Phys. Rev. E 84, 065701(R) (2011)CrossRefGoogle Scholar
- 27.R.L. Chern, C.C. Chang, R.R. Hwang, Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration. Phys. Rev. E 68, 026704 (2003)CrossRefGoogle Scholar
- 28.D.C. Dobson, An efficient method for band structure calculations in 2D photonic crystals. J. Comput. Phys. 149, 363–376 (1999)CrossRefGoogle Scholar
- 29.S.G. Johnson, J.D. Joannopoulos, Photonic crystals: putting a new twist on light. Opt. Express 8, 173 (2001)CrossRefGoogle Scholar
- 30.T.W. McDevitt, G.M. Hulbert, N. Kikuchi, An assumed strain method for the dispersive global-local modeling of periodic structures. Comput. Methods Appl. Mech. Eng. 190, 6425–6440 (2001)CrossRefGoogle Scholar
- 31.M.I. Hussein, G.M. Hulbert, Mode-enriched dispersion models of periodic materials within a multiscale mixed finite element framework. Finite Elem. Anal. Des. 42, 602–612 (2006)CrossRefGoogle Scholar
- 32.M.I. Hussein, Reduced Bloch mode expansion for periodic media band structure calculations. Proc. R. Soc. Lond. A465, 2825–2848 (2009)Google Scholar
- 33.Q. Guo, O.R. Bilal, M.I. Hussein, Convergence of the reduced Bloch mode expansion method for electronic band structure calculations,” in Proceedings of Phononics 2011, Paper PHONONICS-2011-0176, Santa Fe, New Mexico, USA, May 29–June 2, 2011, pp. 238–239Google Scholar
- 34.M.I. Hussein, Dynamics of banded materials and structures: analysis, design and computation in multiple scales, Ph.D. Thesis, University of Michigan, Ann Arbor, USA, 2004.Google Scholar
- 35.O. Døssing, IMAC-XIII keynote address: going beyond modal analysis, or IMAC in a new key. Modal Anal. Int. J. Anal. Exp. Modal Anal. 10, 69 (1995)Google Scholar