Skip to main content

Speedith: A Diagrammatic Reasoner for Spider Diagrams

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7352)

Abstract

In this paper, we introduce Speedith which is a diagrammatic theorem prover for the language of spider diagrams. Spider diagrams are a well-known logic for which there is a sound and complete set of inference rules. Speedith provides a way to input diagrams, transform them via the diagrammatic inference rules, and prove diagrammatic theorems. It is designed as a program that plugs into existing general purpose theorem provers. This allows for seamless formal verification of diagrammatic proof steps within established proof assistants such as Isabelle. We describe the general structure of Speedith, the diagrammatic language, the automatic mechanism that draws the diagrams when inference rules are applied on them, and how formal diagrammatic proofs are constructed.

Keywords

  • Inference Rule
  • Abstract Representation
  • Logical Connective
  • Rule Application
  • Proof Assistant

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-31223-6_19
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-31223-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jamnik, M., Bundy, A., Green, I.: On Automating Diagrammatic Proofs of Arithmetic Arguments. JOLLI 8(3), 297–321 (1999)

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Winterstein, D., Bundy, A., Gurr, C.: Dr.Doodle: A Diagrammatic Theorem Prover. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 331–335. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  3. Kortenkamp, U., Richter-Gebert, J.: Using automatic theorem proving to improve the usability of geometry software. In: MUI (2004)

    Google Scholar 

  4. Stapleton, G., Masthoff, J., Flower, J., Fish, A., Southern, J.: Automated Theorem Proving in Euler Diagram Systems. JAR 39(4), 431–470 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Howse, J., Stapleton, G., Taylor, J.: Spider Diagrams. LMS JCM 8, 145–194 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78. Springer, Heidelberg (1979)

    Google Scholar 

  7. Howse, J., Stapleton, G., Flower, J., Taylor, J.: Corresponding Regions in Euler Diagrams. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams 2002. LNCS (LNAI), vol. 2317, pp. 76–90. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  8. Urbas, M., Jamnik, M.: Heterogeneous Proofs: Spider Diagrams Meet Higher-Order Provers. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 376–382. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  9. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  10. Stapleton, G., Zhang, L., Howse, J., Rodgers, P.: Drawing Euler Diagrams with Circles. In: Goel, A.K., Jamnik, M., Narayanan, N.H. (eds.) Diagrams 2010. LNCS, vol. 6170, pp. 23–38. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  11. Dau, F.: Constants and Functions in Peirce’s Existential Graphs. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 429–442. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  12. Kent, S.: Constraint diagrams: Visualizing invariants in object oriented modelling. In: OOPSLA. SIGPLAN, vol. 32, pp. 327–341. ACM (1997)

    Google Scholar 

  13. Keslter, H., Muller, A., Kraus, J., Buchholz, M., Gress, T., Liu, H., Kane, D., Zeeberg, B., Weinstein, J.: Vennmaster: Area-proportional Euler diagrams for functional go analysis of microarrays. BMC Bioinformatics 9(67) (2008)

    Google Scholar 

  14. De Chiara, R., Hammar, M., Scarano, V.: A system for virtual directories using euler diagrams. ENTCS 134, 33–53 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urbas, M., Jamnik, M., Stapleton, G., Flower, J. (2012). Speedith: A Diagrammatic Reasoner for Spider Diagrams. In: Cox, P., Plimmer, B., Rodgers, P. (eds) Diagrammatic Representation and Inference. Diagrams 2012. Lecture Notes in Computer Science(), vol 7352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31223-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31223-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31222-9

  • Online ISBN: 978-3-642-31223-6

  • eBook Packages: Computer ScienceComputer Science (R0)