Speedith: A Diagrammatic Reasoner for Spider Diagrams

  • Matej Urbas
  • Mateja Jamnik
  • Gem Stapleton
  • Jean Flower
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7352)


In this paper, we introduce Speedith which is a diagrammatic theorem prover for the language of spider diagrams. Spider diagrams are a well-known logic for which there is a sound and complete set of inference rules. Speedith provides a way to input diagrams, transform them via the diagrammatic inference rules, and prove diagrammatic theorems. It is designed as a program that plugs into existing general purpose theorem provers. This allows for seamless formal verification of diagrammatic proof steps within established proof assistants such as Isabelle. We describe the general structure of Speedith, the diagrammatic language, the automatic mechanism that draws the diagrams when inference rules are applied on them, and how formal diagrammatic proofs are constructed.


Inference Rule Abstract Representation Logical Connective Rule Application Proof Assistant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jamnik, M., Bundy, A., Green, I.: On Automating Diagrammatic Proofs of Arithmetic Arguments. JOLLI 8(3), 297–321 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Winterstein, D., Bundy, A., Gurr, C.: Dr.Doodle: A Diagrammatic Theorem Prover. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 331–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Kortenkamp, U., Richter-Gebert, J.: Using automatic theorem proving to improve the usability of geometry software. In: MUI (2004)Google Scholar
  4. 4.
    Stapleton, G., Masthoff, J., Flower, J., Fish, A., Southern, J.: Automated Theorem Proving in Euler Diagram Systems. JAR 39(4), 431–470 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Howse, J., Stapleton, G., Taylor, J.: Spider Diagrams. LMS JCM 8, 145–194 (2005)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78. Springer, Heidelberg (1979)Google Scholar
  7. 7.
    Howse, J., Stapleton, G., Flower, J., Taylor, J.: Corresponding Regions in Euler Diagrams. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams 2002. LNCS (LNAI), vol. 2317, pp. 76–90. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Urbas, M., Jamnik, M.: Heterogeneous Proofs: Spider Diagrams Meet Higher-Order Provers. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 376–382. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Stapleton, G., Zhang, L., Howse, J., Rodgers, P.: Drawing Euler Diagrams with Circles. In: Goel, A.K., Jamnik, M., Narayanan, N.H. (eds.) Diagrams 2010. LNCS, vol. 6170, pp. 23–38. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Dau, F.: Constants and Functions in Peirce’s Existential Graphs. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 429–442. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Kent, S.: Constraint diagrams: Visualizing invariants in object oriented modelling. In: OOPSLA. SIGPLAN, vol. 32, pp. 327–341. ACM (1997)Google Scholar
  13. 13.
    Keslter, H., Muller, A., Kraus, J., Buchholz, M., Gress, T., Liu, H., Kane, D., Zeeberg, B., Weinstein, J.: Vennmaster: Area-proportional Euler diagrams for functional go analysis of microarrays. BMC Bioinformatics 9(67) (2008)Google Scholar
  14. 14.
    De Chiara, R., Hammar, M., Scarano, V.: A system for virtual directories using euler diagrams. ENTCS 134, 33–53 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Matej Urbas
    • 1
  • Mateja Jamnik
    • 1
  • Gem Stapleton
    • 2
  • Jean Flower
    • 3
  1. 1.Computer LaboratoryUniversity of CambridgeUK
  2. 2.School of Computing, Engineering and MathematicsUniversity of BrightonUK
  3. 3.AutodeskUK

Personalised recommendations