Euler Diagram Encodings

  • Paolo Bottoni
  • Gennaro Costagliola
  • Andrew Fish
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7352)


Euler Diagrams are a well-known visualisation of set-based relationships, used in many application areas and at the basis of more complex notations. We propose a static code for concrete Euler Diagrams, which enables efficient storage (vs. storage of concrete diagrams), and transformations preserving concrete-level structure, hence the viewer’s mental map. We provide the theoretical underpinnings of the encoding, examples and deductions, and an indication of their utility. For use in an interactive setting, we provide algorithms to update the code upon curve addition and removal. Independently, we show that the code identifies minimal regions, enabling the computation of the abstract zone set.


Static Code Base Code Minimal Region Spider Diagram Consecutive Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cao, T., Mamakani, K., Ruskey, F.: Symmetric Monotone Venn Diagrams with Seven Curves. In: Boldi, P. (ed.) FUN 2010. LNCS, vol. 6099, pp. 331–342. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Chow, S.C.: Generating and Drawing Area-Proportional Euler and Venn Diagrams. PhD thesis, University of Victoria (2007)Google Scholar
  3. 3.
    Cordasco, G., De Chiara, R., Fish, A.: Interactive visual classification with Euler diagrams. In: Proc. VL/HCC 2009, pp. 185–192. IEEE (2009)Google Scholar
  4. 4.
    Cordasco, G., De Chiara, R., Fish, A.: Fast region computations for reducible Euler diagrams. Computation Geometry: Theory and Applications 44, 52–68 (2011)zbMATHCrossRefGoogle Scholar
  5. 5.
    Dau, F., Fish, A.: Conceptual Spider Diagrams. In: Eklund, P., Haemmerlé, O. (eds.) ICCS 2008. LNCS (LNAI), vol. 5113, pp. 104–118. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Eades, P., Lai, W., Misue, K., Sugiyama, K.: Layout adjustment and the mental map. JVLC 6, 183–210 (1995)Google Scholar
  7. 7.
    Fish, A.: Euler diagram transformations. ECEASST 18, 1–17 (2009)Google Scholar
  8. 8.
    Fish, A., Flower, J.: Abstractions of Euler diagrams. In: Proc. Euler 2004. ENTCS, vol. 134, pp. 77–101 (2005)Google Scholar
  9. 9.
    Fish, A., Flower, J.: Euler Diagram Decomposition. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 28–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Fish, A., Flower, J., Howse, J.: The semantics of augmented constraint diagrams. JVLC 16, 541–573 (2005)Google Scholar
  11. 11.
    Flower, J., Fish, A., Howse, J.: Euler diagram generation. JVLC (2008)Google Scholar
  12. 12.
    Flower, J., Howse, J., Taylor, J.: Nesting in Euler diagrams: syntax, semantics and construction. Software and Systems Modelling 3, 55–67 (2004)CrossRefGoogle Scholar
  13. 13.
    Howse, J., Stapleton, G., Taylor, J.: Spider diagrams. LMS Journal of Computation and Mathematics 8, 145–194 (2005)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kauffman, L.: Knots and Physics. World Scientific (1991)Google Scholar
  15. 15.
    Kent, S.: Constraint diagrams: Visualizing invariants in object oriented modelling. In: Proc. OOPSLA 1997, pp. 327–341. ACM Press (October 1997)Google Scholar
  16. 16.
    Kestler, H.A., Müller, A., Kraus, J.M., Buchholz, M., Gress, T.M., Liu, H., Kane, D.W., Zeeberg, B.R., Weinstein, J.: Vennmaster: Area-proportional Euler diagrams for functional GO analysis of microarrays. BMC Bioinformatics 9, 67 (2008)CrossRefGoogle Scholar
  17. 17.
    Riche, N.H., Dwyer, T.: Untangling Euler diagrams. IEEE VCG 16(6), 1090–1099 (2010)Google Scholar
  18. 18.
    Shin, S.-J.: The Logical Status of Diagrams. Cambridge University Press (1994)Google Scholar
  19. 19.
    Stapleton, G., Masthoff, J., Flower, J., Fish, A., Southern, J.: Automated theorem proving in Euler diagrams systems. Journal of Automated Reasoning (2007)Google Scholar
  20. 20.
    Swoboda, N., Allwein, G.: Using DAG transformations to verify Euler/Venn homogeneous and Euler/Venn FOL heterogeneous rules of inference. SoSyM 3(2), 136–149 (2004)CrossRefGoogle Scholar
  21. 21.
    Thièvre, J., Viaud, M., Verroust-Blondet, A.: Using Euler diagrams in traditional library environments. In: Proc. Euler 2004. ENTCS, vol. 134, pp. 189–202. ENTCS (2005)Google Scholar
  22. 22.
    Weiler, K.: Polygon comparison using a graph representation. Computer Graphics (SIGGRAPH 1980 Proceedings) 14(3), 10–18 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paolo Bottoni
    • 1
  • Gennaro Costagliola
    • 2
  • Andrew Fish
    • 3
  1. 1.Dipartimento di Informatica“Sapienza” University of RomeItaly
  2. 2.Dipartimento di InformaticaUniversity of SalernoItaly
  3. 3.School of Computing, Engineering and MathematicsUniversity of BrightonUK

Personalised recommendations