Skip to main content

Estimation of Web Page Download Time

  • Conference paper
Computer Networks (CN 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 291))

Included in the following conference series:

Abstract

This paper presents a study of a model of Web page download time. According to the proposed model the download time can be modeled on a base of knowledge of round trip time, bandwidth and a concurrency factor specifying the number of HTTP object downloaded concurrently. Through conducted experiments we designate a mean value of the concurrency factor for modern Web browsers: Mozilla Firefox, Internet Explorer and Google Chrome. Analysis of the results of the experiments confirms the serviceability and quality of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borzemski, L., Zatwarnicki, K.: Fuzzy-Neural Web Switch Supporting Differentiated Service. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4252, pp. 195–203. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Mazzolla, M., Mirandola, R.: QoS Analysis For Web Service Applications: A Survey Of Performance-Oriented Approaches From An Architectural Viewpoint. Technical Report UBLCS-2010-05, University of Bologna (2010)

    Google Scholar 

  3. Zatwarnicki, K.: Providing Web Service of Established Quality with the Use of HTTP Requests Scheduling Methods. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010. LNCS(LNAI), vol. 6070, pp. 142–151. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Zatwarnicki, K.: Proposal of a neuro-fuzzy model of a WWW server. In: 5th International Conference on Intelligent Systems Design and Applications, Poland, Wrocław, pp. 141–146. IEEE Press (2005)

    Google Scholar 

  5. Zatwarnicki, K.: Identification of the Web Server. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2011. CCIS, vol. 160, pp. 45–54. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Brownlee, N., Claffy, K.C., Murray, M., Nemeth, E.: Methodology for passive analysis of a university Internet link. In: PAM 2001: Passive and Active Measurement Workshop, Amsterdam, pp. 22–24 (2001)

    Google Scholar 

  7. Brownlee, N., Claffy, K.C.: Internet measurement. IEEE Internet Computing 8(5), 30–33 (2004)

    Article  Google Scholar 

  8. CAIDA. The Cooperative Association for Internet Data Analysis, http://www.caida.org (accessed 2010)

  9. Keynote service, http://www.keynote.com (accessed 2010)

  10. Borzemski, L.: Towards Web Performance Mining. In: Ting, I.-H., Wu, H.-J. (eds.) Web Mining Appli. in E-Commerce and E-Services. SCI, vol. 172, pp. 81–101. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Huang, T., Suhhlok, J.: Fast Pattern-Based Throughput Prediction for TCP Bulk Transfers. In: Proceedings of the Fifth IEEE International Symposium on Cluster Computing and the Grid, Washington, D.C, USA, vol. I, pp. 410–417 (2005)

    Google Scholar 

  12. Lu, D., Qiao, Z., Dinda, P.A., Bustamante, F.: Characterizing and Predicting TCP Throughput on the Wide Area Network Distributed Computing Systems. In: Proceedings of 25th IEEE International Conference, pp. 414–424 (2005)

    Google Scholar 

  13. Mirza, M., Sommers, J., Barford, P., Zhu, X.: A Machine Learning Approach to TCP Throughput Prediction. In: ACM SIGMETRICS 2007 Proc., vol. 35, pp. 97–108 (2007)

    Google Scholar 

  14. Qiao, Y., Skicewich, J., Dinda, P.: An Empirical Study of the Multiscale Predictability of Network Traffic. In: Proc. IEEE HPDC (2003)

    Google Scholar 

  15. Sang, A., Li, S.: A Predictability Analysis of Network Traffic. In: Proc. of the 2000 IEEE Computer and Comm. Societies, Conf. on Computer Communications, pp. 342–351 (2000)

    Google Scholar 

  16. Borzemski, L., Kliber, M., Nowak, Z.: Application of Data Mining Algorithms to TCP throughput Prediction in HTTP Transactions. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 159–168. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Kurose, J.F., Ross, K.W.: Computer Networking: A Top-Down Aproach Featuring the Internet. Addison Wesley, Boston (2001)

    Google Scholar 

  18. Menasce, D.A., Almeida, V.A.F.: Capacity planning for Web performance. Metrics, models, and methods. Prentice Hall PTR, New Jersey (2002)

    Google Scholar 

  19. Pcap library documentation, http://www.tcpdump.org/pcap.html (accessed 2010)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zatwarnicki, K., Zatwarnicka, A. (2012). Estimation of Web Page Download Time. In: Kwiecień, A., Gaj, P., Stera, P. (eds) Computer Networks. CN 2012. Communications in Computer and Information Science, vol 291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31217-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31217-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31216-8

  • Online ISBN: 978-3-642-31217-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics