Advertisement

Estimation of Fractal Dimension According to Optical Density of Cell Nuclei in Papanicolaou Smears

  • Dorota Oszutowska-Mazurek
  • Przemysław Mazurek
  • Kinga Sycz
  • Grażyna Waker-Wójciuk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7339)

Abstract

The computer assisted Papanicolaou smears analysis is considered in this paper. The fractal based technique using the Triangular Prism Method and field area of cell nuclei is proposed. Digital images of Papanicolaou smears are color and the selection of the proper color subspace is investigated. The best results are obtained for the green channel. The fractal dimension is not sufficient for the classification of the cell nucleus (correct/feature of atypia). The proposed technique is based on the analysis fractal dimension for two scale ranges. Good separation between cell nuclei is obtained without consideration of the cytoplasmic index.

Keywords

Fractal Dimension Cell Nucleus Oral Squamous Cell Carcinoma Green Channel Triangular Prism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ballerini, L., Franzn, L.: Fractal Analysis of Microscopic Images of Breast Tissue. WSEAS Trans. on Circuit 11(2), 7 (2001), doi:10.11861471–2407–10–260Google Scholar
  2. 2.
    Bauer, W., Mackenzie, C.D.: Cancer Detection via Determination of Fractal Cell Dimension (1999), lhttp:cdsweb.cern.chrecord376287Google Scholar
  3. 3.
    Bedin, V., Adam, R.L., de Sa, B., Landman, G., Metze, K.: Fractal dimension of chromatin is an independent prognostic factor for survival in melanoma. BMC Cancer 10, 260 (2010), http://www.biomedcentral.com/1471--2407/10/260 PubMedCrossRefGoogle Scholar
  4. 4.
    Blackledge, J., Dubovitskiy, D.: An Optical Machine Vision System for Applications in Cytopathology. ISAST Transactions on Computers and Intelligent Systems 2(1), 95–109 (2010)Google Scholar
  5. 5.
    Chosia, M., Domagała, W.: Cytologia szyjki macicy (book in polish). Fundacja Pro Pharmacia Futura (2010)Google Scholar
  6. 6.
    Clarke, K.C.: Computation of the Fractal Dimension of Topographic Surfaces using the Triangular Prism Surface Area Method. Computer and Geosciences 12(5), 713–722 (1986)CrossRefGoogle Scholar
  7. 7.
    Dey, P.: Fractal geometry: Basic principles and applications in pathology. Anal. Quant. Cytol. Histol. 27(5), 284–290 (2005); PMID: 16447821PubMedGoogle Scholar
  8. 8.
    Goutzanis, L., Papadogeorgakis, N., Pavlopoulos, P.M., Katti, K., Petsinis, V., Plochoras, I., Pantelidaki, C., Kavantzas, N., Patsouris, E., Alexandridis, C.: Nuclear fractal dimension as a prognostic factor in oral squamous cell carcinoma. Oral Oncology 44, 345–353 (2008), 10.1016/j.oraloncology.2007.04.005PubMedCrossRefGoogle Scholar
  9. 9.
    Hoda, R.S., Hoda, S.A.: Fundamentals of Pap Test Cytology. Humana Press (2007)Google Scholar
  10. 10.
    IARC, Cytopathology of the uterine cervix – digital atlas. International Agency for Research on Cancer, http://screening.iarc.fr/atlascyto.php
  11. 11.
    Kaye, B.H.: A Random Walk Through Fractal Dimensions, VCH (1994)Google Scholar
  12. 12.
    Mandelbrot, B.B.: The Fractal Geometry of the Nature. W. H. Freeman and Company (1983)Google Scholar
  13. 13.
    McKenna, S.J.: Automated analysis of Papanicolaou smears. PhD Thesis, University of Dundee (1994)Google Scholar
  14. 14.
    Nielsen, B., Albregtsen, F., Danielsen, H.E.: Fractal Analysis of Monolayer Cell Nuclei from Two Different Prognostic Classes of Early Ovarian Cancer. Fractals in Biology and Medicine, Mathematics and Biosciences in Interaction, Part 3, 175–186 (2005), doi:10.1007/3–7643–7412–8_16Google Scholar
  15. 15.
    Ohri, S., Dey, P., Nijhawan, R.: Fractal dimension on aspiration cytology smears of breast and cervical lesions. Anal. Quant. Cytol. Histol. 26(2), 109–112 (2004); PMID: 15131899 PubMedGoogle Scholar
  16. 16.
    Oszutowska–Mazurek, D., Mazurek, P.: Fractal–based generator for microscopic cell and cell nucleus contour synthesis. Metody Informatyki Stosowanej 27(2), 105–112 (2011)Google Scholar
  17. 17.
    Oszutowska–Mazurek, D., Waker–Wójciuk, G., Mazurek, P.: Fractal analysis limitations in digital analysis of Papanicolaou cytological images. Measurement Automation and Monitoring 1 (2012)Google Scholar
  18. 18.
    Peitgen, H.O., Jurgens, H., Saupe, D.: Fractal for the Classrooms, Part1: Introduction to Fractals and Chaos. Springer (1992)Google Scholar
  19. 19.
    Sedivy, R., Windischberger, C., Svozil, K., Moser, E., Breitenecker, G.: Fractal Analysis: An Objective Method for Identifying Atypical Nuclei in Dysplastic Lesions of the Cervix Uteri. Gynecologic Oncology 75, 78–83 (1999); gyno.1999.5516PubMedCrossRefGoogle Scholar
  20. 20.
    Seuront, L.: Fractals and Multifractals in Ecology and Aquatic Science. CRC Press (2010)Google Scholar
  21. 21.
    Sharma, N., Dey, P.: Fractal dimension of cell clusters in effusion cytology. Diagnostic Cytopathology 38(12), 866–868 (2010), doi:10.1002/dc.21299PubMedCrossRefGoogle Scholar
  22. 22.
    Solomon, D., Nayar, R.: The Bethesda System for Reporting Cervical Cytology. Springer (2004)Google Scholar
  23. 23.
    Steven, I.: Linear Richardson Plots from Non–Fractal Data Sets. Dutch Mathematical Geology 25(6), 737–751 (1993), doi:10.1007/BF00893176.Google Scholar
  24. 24.
    Sun, W., Xu, G., Gong, P., Liang, S.: Fractal analysis of remotely sensed images: A review of methods and applications. International Journal of Remote Sensing 27(22), 4963–4990 (2006), doi:10.1080/01431160600676695CrossRefGoogle Scholar
  25. 25.
    Yokoyama, T., Kawahar, A., Kage, M., Kojiro, M., Takayasu, H., Sato, T.: Image analysis of irregularity of cluster shape in cytological diagnosis of breast tumors: Cluster analysis with 2D–fractal dimension. Diagn Cytopathol. 33(2), 71–77 (2005); PMID: 16007648PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou, G., Lam, N.S.-N.: A comparison of fractal dimension estimators based on multiple surface generation algorithms. Computers & Geosciences 31, 1260–1269 (2005), doi:10.1016/j.cageo.2005.03.016CrossRefGoogle Scholar
  27. 27.
    Zieliński, K.W., Strzelecki, M.: Komputerowa analiza obrazu biomedycznego. Wstęp do morfometrii i patrologii ilościowej. Wydawnictwo Naukowe PWN (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dorota Oszutowska-Mazurek
    • 2
  • Przemysław Mazurek
    • 1
  • Kinga Sycz
    • 3
  • Grażyna Waker-Wójciuk
    • 3
  1. 1.Department of Signal Processing and Multimedia EngineeringWest-Pomeranian University of TechnologySzczecinPoland
  2. 2.Department of PathomorphologyGryfice Hospital MedicamGryficePoland
  3. 3.Department of PatomorphologyIndependent Public Voivodeship United HospitalSzczecinPoland

Personalised recommendations