Threshold-Crossing Model of Human Motoneuron

  • Bozenna Kuraszkiewicz
  • Dariusz Mlozniak
  • Maria Piotrkiewicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7339)

Abstract

This paper presents the “threshold-crossing” motoneurone model. The model is verified by the experimental results, obtained from human experiments. The results of computer simulation based on this model explain discrepancies found in the literature concerning experimental investigation of the relationship between motoneuron excitability and its firing rate and show that most valuable experimental results may be obtained, when the stimulation by week stimuli is superimposed on the low-frequency motoneuronal firing.

Keywords

Motoneuron Excitability EPSP Amplitude Synaptic Noise Human Motoneuron Motoneuron Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brouwer, B., Ashby, P., Midroni, G.: Excitability of corticospinal neurons during tonic muscle contractions in man. Exp. Brain Res. 74, 649–652 (1989)PubMedCrossRefGoogle Scholar
  2. 2.
    Calvin, W.H.: Three modes of repetitive firing and the role of threshold time course between spikes. Brain Res. 69, 341–346 (1974)PubMedCrossRefGoogle Scholar
  3. 3.
    Coombs, J., Eccles, J., Fatt, P.: Excitatory synaptic action in motoneurones. J. Physiol. Lond. 130, 374–395 (1955)PubMedGoogle Scholar
  4. 4.
    Jones, K.E., Bawa, P.: A comparison of human motoneuron data to simulated data using cat motoneuron models. J. Physiol. Paris 93, 43–59 (1999)PubMedCrossRefGoogle Scholar
  5. 5.
    Kernell, D.: The motoneurone and its muscle fibres, p. 341. Oxford University Press, Oxford (2006)CrossRefGoogle Scholar
  6. 6.
    Kudina, L., Andreeva, R.: Discharge frequency and excitability of human firing motoneuron. Biophysics 50, 778–783 (2005)Google Scholar
  7. 7.
    Kudina, L.P.: Excitability of firing motoneurones tested by Ia afferent volleys in human triceps surae. Electroencephalogr. Clin. Neurophysiol. 69, 576–580 (1988)PubMedCrossRefGoogle Scholar
  8. 8.
    Kudina, L.P., Alexeeva, N.L.: After-potentials and control of repetitive firing in human motoneurones. Electroencephalogr. Clin. Neurophysiol. 85, 345–353 (1992)PubMedCrossRefGoogle Scholar
  9. 9.
    Kudina, L.P.: Analysis of firing behaviour of human motoneurones within ’subprimary range’. J. Physiol. Paris 93, 115–123 (1999)PubMedCrossRefGoogle Scholar
  10. 10.
    Matthews, P.B.: The effect of firing on the excitability of a model motoneurone and its implications for cortical stimulation. J. Physiol. Lond. 518, 867–882 (1999)PubMedCrossRefGoogle Scholar
  11. 11.
    Miles, T.S., Türker, K.S., Le, T.H.: Ia reflexes and EPSPs in human soleus motor neurones. Exp. Brain Res. 77, 628–636 (1989)PubMedGoogle Scholar
  12. 12.
    Person, R.S., Kudina, L.P.: Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle. Electroencephalography and Clinical Neurophysiology 32, 471–483 (1972)PubMedCrossRefGoogle Scholar
  13. 13.
    Piotrkiewicz, M.: An influence of afterhyperpolarization on the pattern of motoneuronal rhythmic activity. J. Physiol. Paris 93, 125–133 (1999)PubMedCrossRefGoogle Scholar
  14. 14.
    Piotrkiewicz, M.: Modelling of motoneuronal rhythmic activity. Biocybernetics and Biomedical Engineering 21, 53–75 (2001)Google Scholar
  15. 15.
    Piotrkiewicz, M., Kudina, L., Hausmanowa-Petrusewicz, I., Zhoukovskaya, N., Mierzejewska, J.: Discharge properties and afterhyperpolarization of human motoneurons. Biocyber. Biomed. Eng. 21, 53–75 (2001)Google Scholar
  16. 16.
    Piotrkiewicz, M., Kudina, L., Mierzejewska, J.: Recurrent inhibition of human firing motoneurons (experimental and modeling study). Biol. Cybern. 91, 243–257 (2004)PubMedCrossRefGoogle Scholar
  17. 17.
    Piotrkiewicz, M., Kudina, L., Jakubiec, M.: Computer simulation study of the relationship between the profile of excitatory postsynaptic potential and stimulus-correlated motoneuron firing. Biological Cybernetics 100, 215–230 (2009)PubMedCrossRefGoogle Scholar
  18. 18.
    Piotrkiewicz, M., Kudina, L.: Analysis of motoneuron responses to composite synaptic volleys (computer simulation study). Exp. Brain Res. 217, 209–221 (2012)PubMedCrossRefGoogle Scholar
  19. 19.
    Powers, R.K., Binder, M.D.: Experimental evaluation of input-output models of motoneuron discharge. J. Neurophysiol. 75, 367–379 (1996)PubMedGoogle Scholar
  20. 20.
    Powers, R.K., Binder, M.D.: Relationship between the time course of the afterhyperpolarization and discharge variability in cat spinal motoneurones. J. Physiol. Lond. 528, 131–150 (2000)PubMedCrossRefGoogle Scholar
  21. 21.
    Powers, R.K., Türker, K.S.: Estimates of EPSP amplitude based on changes in motoneuron discharge rate and probability. Exp. Brain Res. 206, 427–440 (2010)PubMedCrossRefGoogle Scholar
  22. 22.
    Rossi-Durand, C., Jones, K.E., Adams, S., Bawa, P.: Comparison of the depression of H-reflexes following previous activation in upper and lower limb muscles in human subjects. Exp. Brain Res. 126, 117–127 (1999)PubMedCrossRefGoogle Scholar
  23. 23.
    Schwindt, P.C., Calvin, W.H.: Nature of conductances underlying rhythmic firing in cat spinal motoneurons. J. Neurophysiol. 36, 955–973 (1973)PubMedGoogle Scholar
  24. 24.
    Tokizane, T., Shimazu, H.: Functional differentiation of human skeletal muscle. Charles C. Thomas, Springfield (1964)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bozenna Kuraszkiewicz
    • 1
  • Dariusz Mlozniak
    • 1
  • Maria Piotrkiewicz
    • 1
  1. 1.Nałęcz Institute of Biocybernetics and Biomedical EngineeringPolish Academy of ScienceWarsawPoland

Personalised recommendations