Advertisement

A Simple Framework for the Generalized Nearest Neighbor Problem

  • Tomas Hruz
  • Marcel Schöngens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)

Abstract

The problem of finding a nearest neighbor from a set of points in ℝ d to a complex query object has attracted considerable attention due to various applications in computational geometry, bio-informatics, information retrieval, etc. We propose a generic method that solves the problem for various classes of query objects and distance functions in a unified way. Moreover, for linear space requirements the method simplifies the known approach based on ray-shooting in the lower envelope of an arrangement.

Keywords

Voronoi Diagram Computational Geometry Space Requirement Query Time Recursive Call 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P., Sharir, M.: Arrangements and their Applications. Handbook of Computational Geometry, pp. 49–119 (1998)Google Scholar
  2. 2.
    Agarwal, P.K., Matoušek, J.: On Range Searching with Semialgebraic Sets. Discrete and Computational Geometry 11(1), 393–418 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chan, T.M.: Optimal Partition Trees. In: SCG 2010: Proceedings of the 2010 Annual Symposium on Computational Geometry, pp. 1–10. ACM (2010)Google Scholar
  4. 4.
    Chazelle, B.: The Discrepancy Method. Cambridge University Press (2000)Google Scholar
  5. 5.
    Chazelle, B., Welzl, E.: Quasi-optimal range searching in spaces of finite VC-dimension. Discrete and Computational Geometry 4(1), 467–489 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cole, R., Yap, C.-K.: Geometric Retrieval Problems. In: FOCS 1983: Proceedings of the 24th Annual IEEE Symposium on Foundations of Computer Science, pp. 112–121 (1983)Google Scholar
  7. 7.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry - Algorithms and Applications, 2nd edn. Springer (2000)Google Scholar
  8. 8.
    Haussler, D., Welzl, E.: Epsilon-nets and Simplex Range Queries. In: SCG 1986: Proceedings of the 2nd Annual Symposium on Computational Geometry, p. 71. ACM (1986)Google Scholar
  9. 9.
    Krauthgamer, R., Lee, J.: Navigating Nets: Simple Algorithms for Proximity Search. In: SODA 2004: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 798–807. ACM (2004)Google Scholar
  10. 10.
    Matoušek, J.: Construction of epsilon-Nets. Discrete & Computational Geometry 5, 427–448 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Matoušek, J.: Efficient Partition Trees. Discrete and Computational Geometry 8(1), 315–334 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Matoušek, J.: Geometric Discrepancy. Springer (1999)Google Scholar
  13. 13.
    Matoušek, J., Schwarzkopf, O.: On Ray shooting in Convex Polytopes. Discrete and Computational Geometry 10(1), 215–232 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Megiddo, N.: Applying Parallel Computation Algorithms in the Design of Serial Algorithms. Journal of the ACM 30(4), 852–865 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Mitra, P., Chaudhuri, B.B.: Efficiently computing the closest point to a query line. Pattern Recognition Letters 19(11), 1027–1035 (1998)zbMATHCrossRefGoogle Scholar
  16. 16.
    Mitra, P., Mukhopadhyay, A.: Computing a Closest Point to a Query Hyperplane in Three and Higher Dimensions. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2669, pp. 787–796. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Mitra, P., Mukhopadhyay, A., Rao, S.V.: Computing the Closest Point to a Circle. In: CCCG 2003: Proceedings of the 15th Canadian Conference on Computational Geometry, pp. 132–135 (2003)Google Scholar
  18. 18.
    Mukhopadhyay, A.: Using simplicial partitions to determine a closest point to a query line. Pattern Recognition Letters 24(12), 1915–1920 (2003)CrossRefGoogle Scholar
  19. 19.
    Schöngens, M., Hruz, T.: A Simple Framework for the Generalized Nearest Neighbor Problem. Technical Report 758, Theoretical Computer Science, ETH Zurich (2012)Google Scholar
  20. 20.
    Sharir, M., Shaul, H.: Ray Shooting Amid Balls, Farthest Point from a Line, and Range Emptiness Searching. In: SODA 2005: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 525–534 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomas Hruz
    • 1
  • Marcel Schöngens
    • 1
  1. 1.Institute of Theoretical Computer ScienceETH ZurichSwitzerland

Personalised recommendations