Advertisement

Kernel Bounds for Structural Parameterizations of Pathwidth

  • Hans L. Bodlaender
  • Bart M. P. Jansen
  • Stefan Kratsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)

Abstract

Assuming the AND-distillation conjecture, the Pathwidth problem of determining whether a given graph G has pathwidth at most k admits no polynomial kernelization with respect to k. The present work studies the existence of polynomial kernels for Pathwidth with respect to other, structural, parameters.

Our main result is that, unless NP ⊆ coNP/poly, Pathwidth admits no polynomial kernelization even when parameterized by the vertex deletion distance to a clique, by giving a cross-composition from Cutwidth. The cross-composition works also for Treewidth, improving over previous lower bounds by the present authors. For Pathwidth, our result rules out polynomial kernels with respect to the distance to various classes of polynomial-time solvable inputs, like interval or cluster graphs.

This leads to the question whether there are nontrivial structural parameters for which Pathwidth does admit a polynomial kernelization. To answer this, we give a collection of graph reduction rules that are safe for Pathwidth. We analyze the success of these results and obtain polynomial kernelizations with respect to the following parameters: the size of a vertex cover of the graph, the vertex deletion distance to a graph where each connected component is a star, and the vertex deletion distance to a graph where each connected component has at most c vertices.

Keywords

Vertex Cover Interval Graph Polynomial Kernel Chordal Graph Reduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  2. 2.
    Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory, Ser. B 35, 39–61 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1-2), 1–45 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8, 277–284 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Gustedt, J.: On the pathwidth of chordal graphs. Discrete Appl. Math. 45, 233–248 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    van den Eijkhof, F., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for weighted treewidth. Algorithmica 47(2), 139–158 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bodlaender, H.L., Koster, A.M.C.A., van den Eijkhof, F.: Preprocessing rules for triangulation of probabilistic networks. Computational Intelligence 21(3), 286–305 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ellis, J.A., Sudborough, I.H., Turner, J.S.: The vertex separation and search number of a graph. Inf. Comput. 113(1), 50–79 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM J. Discrete Math. 6, 181–188 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Möhring, R.H.: Triangulating graphs without asteroidal triples. Discrete Applied Mathematics 64(3), 281–287 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Clautiaux, F., Carlier, J., Moukrim, A., Négre, S.: New Lower and Upper Bounds for Graph Treewidth. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS, vol. 2647, pp. 70–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: Proc. 28th STACS, pp. 165–176 (2011)Google Scholar
  16. 16.
    Monien, B., Sudborough, I.H.: Min cut is NP-complete for edge weighted trees. Theor. Comput. Sci. 58, 209–229 (1988)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hans L. Bodlaender
    • 1
  • Bart M. P. Jansen
    • 1
  • Stefan Kratsch
    • 1
  1. 1.Utrecht UniversityThe Netherlands

Personalised recommendations