Skip to main content

Faster Parameterized Algorithms for Deletion to Split Graphs

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7357)

Abstract

An undirected graph is said to be split if its vertex set can be partitioned into two sets such that the subgraph induced on one of them is a complete graph and the subgraph induced on the other is an independent set. We study the problem of deleting the minimum number of vertices or edges from a given input graph so that the resulting graph is split.We initiate a systematic study and give efficient fixed-parameter algorithms and polynomial sized kernels for the problem. More precisely,

  1. 1

    for Split Vertex Deletion, the problem of determining whether there are k vertices whose deletion results in a split graph, we give an \({\cal O}^*(2^k)\) algorithm improving on the previous best bound of \({\cal O}^*({2.32^k})\). We also give an \({\cal O}(k^3)\)-sized kernel for the problem.

  2. 2

    For Split Edge Deletion, the problem of determining whether there are k edges whose deletion results in a split graph, we give an \({\cal O}^*( 2^{ O(\sqrt{k}\log k) } )\) algorithm. We also prove the existence of an \({\cal O}(k^2)\) kernel.

In addition, we note that our algorithm for Split Edge Deletion  adds to the small number of subexponential parameterized algorithms not obtained through bidimensionality, and on general graphs.

Keywords

  • Vertex Cover
  • Reduction Rule
  • Graph Class
  • Split Graph
  • Colored Instance

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-31155-0_10
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-31155-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Khzam, F.: A kernelization algorithm for d-hitting set. Journal of Computer and System Sciences 76(7), 524–531 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 49–58. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  3. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. J. Comput. Syst. Sci. 67, 789–807 (2003)

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)

    CrossRef  Google Scholar 

  6. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)

    Google Scholar 

  7. Foldes, S., Hammer, P.: Split graphs. Congressus Numerantium 19, 311–315 (1977)

    MathSciNet  Google Scholar 

  8. Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-in. In: SODA, pp. 1737–1746 (2012)

    Google Scholar 

  9. Fujito, T.: A unified approximation algorithm for node-deletion problems. Discrete Appl. Math. 86, 213–231 (1998)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  11. Guo, J.: Problem Kernels for NP-Complete Edge Deletion Problems: Split and Related Graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 915–926. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  12. Heggernes, P., Mancini, F.: Minimal split completions. Discrete Applied Mathematics 157(12), 2659–2669 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  13. Heggernes, P., van’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Parameterized Complexity of Vertex Deletion into Perfect Graph Classes. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 240–251. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  14. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. CoRR, abs/1203.0833 (2012)

    Google Scholar 

  16. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. ACM 41, 960–981 (1994)

    MathSciNet  MATH  CrossRef  Google Scholar 

  17. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  18. Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorithmica 62(3-4), 807–822 (2012)

    MathSciNet  MATH  CrossRef  Google Scholar 

  19. Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Lp can be a cure for parameterized problems. In: STACS, pp. 338–349 (2012)

    Google Scholar 

  20. Tyshkevich, R.I., Chernyak, A.A.: Yet another method of enumerating unmarked combinatorial objects. Mathematical Notes 48, 1239–1245 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghosh, E. et al. (2012). Faster Parameterized Algorithms for Deletion to Split Graphs. In: Fomin, F.V., Kaski, P. (eds) Algorithm Theory – SWAT 2012. SWAT 2012. Lecture Notes in Computer Science, vol 7357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31155-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31155-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31154-3

  • Online ISBN: 978-3-642-31155-0

  • eBook Packages: Computer ScienceComputer Science (R0)