Advertisement

α-Visibility

  • Mohammad Ghodsi
  • Anil Maheshwari
  • Mostafa Nouri
  • Jörg-Rüdiger Sack
  • Hamid Zarrabi-Zadeh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)

Abstract

We study a new class of visibility problems based on the notion of α-visibility. Given an angle α and a collection of line segments \(\ensuremath{{\cal S}}\) in the plane, a segment t is said to be α-visible from a point p, if there exists an empty triangle with one vertex at p and the side opposite to p on t such that the angle at p is α. In this model of visibility, we study the classical variants of point visibility, weak and complete segment visibility, and the construction of the visibility graph. We also investigate the natural query versions of these problems, when α is either fixed or specified at query time.

Keywords

Short Path Query Point Query Time Short Path Problem Simple Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aronov, B., Guibas, L., Teichmann, M., Zhang, L.: Visibility queries and maintenance in simple polygons. Discrete Comput. Geom. 27(4), 461–483 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Asano, T., Asano, T., Guibas, L., Hershberger, J., Imai, H.: Visibility of disjoint polygons. Algorithmica 1(1), 49–63 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Asano, T., Ghosh, S., Shermer, T.: Visibility in Plane in the Handbook in Computational Geometry. Elsevier Science (1999)Google Scholar
  4. 4.
    Bose, P., Lubiw, A., Munro, J.: Efficient visibility queries in simple polygons. In: Proc. 4th Canadian Conf. Comput. Geom., pp. 23–28 (1992)Google Scholar
  5. 5.
    Brunn, H.: Über Kerneigebiete. Math. Ann. 73, 436–440 (1913)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chan, T.M.: Optimal partition trees. In: Proceedings of the 2010 Annual Symposium on Computational Geometry, SoCG 2010, pp. 1–10. ACM, N.Y. (2010)CrossRefGoogle Scholar
  7. 7.
    ElGindy, H.A., Avis, D.: A linear algorithm for computing the visibility polygon from a point. J. Algorithms 2(2), 186–197 (1981)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ghosh, S.: Visibility Algorithms in the Plane. Cambridge University Press (2007)Google Scholar
  9. 9.
    Ghosh, S., Mount, D.: An output-sensitive algorithm for computing visibility. SIAM J. Comput. 20, 888–910 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Gudmundsson, J., Morin, P.: Planar visibility: testing and counting. In: Proceedings of the 2010 Annual Symposium on Computational Geometry. ACM (2010)Google Scholar
  11. 11.
    Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Guibas, L., Motwani, R., Raghavan, P.: The robot localization problem. SIAM J. Comput. 26(4), 1120–1138 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Heffernan, P., Mitchell, J.: An optimal algorithm for computing visibility in the plane. SIAM J. Comput. 24(1), 184–201 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Keil, M., Mount, D., Wismath, S.: Visibility stabs and depth-first spiralling on line segments in output sensitive time. Int. J. Comput. Geometry Appl. 10(5), 535–552 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lee, D.: Visibility of a simple polygon. Computer Vision, Graphics, and Image Processing 22(2), 207–221 (1983)zbMATHCrossRefGoogle Scholar
  16. 16.
    Matoušek, J.: Range searching with efficient hierarchical cuttings. Discrete & Computational Geometry 10, 157–182 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Melissaratos, E., Souvaine, D.: Shortest paths help solve geometric optimization problems in planar regions. SIAM Jl. Computing 21(4), 601–638 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Munro, J., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J. Comput. 31, 762–776 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nouri, M., Zarei, A., Ghodsi, M.: Weak Visibility of Two Objects in Planar Polygonal Scenes. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part I. LNCS, vol. 4705, pp. 68–81. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Pocchiola, M., Vegter, G.: The visibility complex. Int. J. Comput. Geometry Appl. 6(3), 279–308 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Souvaine, D.: Computational geometry in a curved world (algorithm). PhD thesis. Princeton University, Princeton (1986), AAI8629439Google Scholar
  22. 22.
    Suri, S., O’Rourke, J.: Worst-case optimal algorithms for constructing visibility polygons with holes. In: Proceedings of the 1986 Annual Symposium on Computational Geometry, pp. 14–23 (1986)Google Scholar
  23. 23.
    Vegter, G.: The Visibility Diagram: A Data Structure for Visibility Problems and Motion Planning. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 97–110. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  24. 24.
    Zarei, A., Ghodsi, M.: Query point visibility computation in polygons with holes. Comput. Geom. Theory Appl. 39, 78–90 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mohammad Ghodsi
    • 1
    • 3
  • Anil Maheshwari
    • 2
  • Mostafa Nouri
    • 1
  • Jörg-Rüdiger Sack
    • 2
  • Hamid Zarrabi-Zadeh
    • 1
  1. 1.Department of Computer EngineeringSharif University of TechnologyTehranIran
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.Institute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations