A Segmentation Method for Tree Crown Detection and Modelling from LiDAR Measurements

  • José Luis Silván-Cárdenas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7329)


A watershed segmentation algorithm is proposed for automatic extraction of tree crowns from LiDAR data to support 3-d modelling of forest stands. A relatively sparse LiDAR point cloud was converted to a surface elevation in raster format and a canopy height model (CHM) extracted. Then, the segmentation method was applied on the CHM and results combined with the original point cloud to generate models of individual tree crowns. The method was tested in 200 circular plots (400 m 2) located over 50 sites of a conservation area in Mexico City. The segmentation method exhibited a moderate to perfect detection rate on 66% of plots tested. One major factor for a poor detection was identified as the relatively low sampling rate of LiDAR data with respect to crown sizes.


Remote sensing LiDAR Watershed segmentation tree crown detection 3-d modelling 


  1. 1.
    Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection (1979),
  2. 2.
    Brandtberg, T., Warner, T., Landenberger, R., McGraw, J.: Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in north america. Remote Sensing of Environment 85(3), 290–303 (2003)CrossRefGoogle Scholar
  3. 3.
    Chen, Q., Baldocchi, D., Gong, P., Kelly, M.: Isolating individual trees in a savanna woodland using small footprint lidar data. Photogrammetric Engineering and Remote Sensing 72(8), 923–932 (2006)Google Scholar
  4. 4.
    CONAFOR-SEMARNAT: Manual y procedimientos para el muestreo de campo para el inventario nacional forestal y de suelos (S/F),
  5. 5.
    Gutiérrez, M.T., González, J., Zamorano, J.: La Cuenca de México y sus cambios demográfico-espaciales. In: Temas Selectos de Geografía, p. 155. Instituto de Geografía, UNAM, México (2005)Google Scholar
  6. 6.
    Hyyppä, J., Hyyppä, H., Yu, X., Kaartinen, H., Kukko, A., Holopainen, M.: Topographic Laser Ranging and Scanning. In: Forest Inventory Using Small-Footprint Airborne LiDAR, ch. 12, pp. 335–370. CRC Press (2009)Google Scholar
  7. 7.
    Hyyppä, J., Kelle, O., Lehikoinen, M., Inkinen, M.: A segmentation-based method to retrieve stem volume estimates from 3-d tree height models produced by laser scanners. IEEE Transactions on Geoscience and Remote Sensing 39(5), 969–975 (2001)CrossRefGoogle Scholar
  8. 8.
    Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing 29(6), 1153–1160 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Silván-Cárdenas, J.L., Wang, L.: A multi-resolution approach for filtering LiDAR altimetry data. ISPRS Journal of Photogrammetry and Remote Sensing 61(1), 11–22 (2006)CrossRefGoogle Scholar
  10. 10.
    Silván-Cárdenas, J.L., Wang, L.: Extraction of Buildings Footprint from LiDAR Altimetry Data with the Hermite Transform. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ben-Youssef Brants, C., Hancock, E.R. (eds.) MCPR 2011. LNCS, vol. 6718, pp. 314–321. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • José Luis Silván-Cárdenas
    • 1
  1. 1.Centro de Investigación en Geografía y Geomática “Ing. Jorge L. Tamayo” A.C.TlalpanMexico

Personalised recommendations