Advertisement

Solving Multidimensional 0–1 Knapsack Problem with an Artificial Fish Swarm Algorithm

  • Md. Abul Kalam Azad
  • Ana Maria A. C. Rocha
  • Edite M. G. P. Fernandes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7335)

Abstract

The multidimensional 0–1 knapsack problem is a combinatorial optimization problem, which is NP-hard and arises in many fields of optimization. Exact as well as heuristic methods exist for solving this type of problem. Recently, a population-based artificial fish swarm algorithm was proposed and applied in an engineering context. In this paper, we present a binary version of the artificial fish swarm algorithm for solving multidimensional 0–1 knapsack problem. Infeasible solutions are made feasible by a decoding algorithm. We test the presented method with a set of benchmark problems and compare the obtained results with other methods available in literature. The tested method appears to give good results when solving these problems.

Keywords

0–1 knapsack problem multiple constraints artificial fish swarm decoding algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akçay, Y., Li, H., Xu, S.H.: Greedy algorithm for the general multidimensional knapsack problem. Ann. Oper. Res. 150, 17–29 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Balev, S., Yanev, N., Fréville, A., Andonov, R.: A dynamic programming based reduction procedure for the multidimensional 0–1 knapsack problem. Eur. J. Oper. Res. 186, 63–76 (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Battiti, R., Tecchiolli, G.: Local search with memory: benchmarking RTS. OR Spektrum 17, 67–86 (1995)zbMATHCrossRefGoogle Scholar
  4. 4.
    Beasley, J.E.: OR-Library; Distributing test problems by electronic mail. J. Oper. Res. Soc. 41, 1069–1072 (1990), http://people.brunel.ac.uk/~mastjjb/jeb/info.html Google Scholar
  5. 5.
    Boyer, V., Elkihel, M., Baz, D.E.: Heuristics for the 0–1 multidimensional knapsack problem. Eur. J. Oper. Res. 199, 658–664 (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Cabot, A.V.: An enumeratuion algorithm for knapsack problems. Oper. Res. 18, 306–311 (1970)zbMATHCrossRefGoogle Scholar
  7. 7.
    Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. J. Heuristics 4, 63–86 (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Deep, K., Bansal, J.C.: A socio-cognitive particle swarm optimization for multi-dimensional knapsack problem. In: Proceedings of the First International Conference on Emerging Trends in Engineering and Technology, pp. 355–360 (2008)Google Scholar
  9. 9.
    Djannaty, F., Doostdar, S.: A hybrid genetic algorithm for the multidimensional knapsack problem. Int. J. Contemp. Math. Sci. 3(9), 443–456 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Drexl, A.: A simulated annealing approach to the multiconstraint zero–one knapsack problem. Computing 40, 1–8 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fernandes, E.M.G.P., Martins, T.F.M.C., Rocha, A.M.A.C.: Fish swarm intelligent algorithm for bound constrained global optimization. In: Aguiar, J.V. (ed.) CMMSE 2009, pp. 461–472 (2009)Google Scholar
  12. 12.
    Fontanari, J.F.: A statistical analysis of the knapsack problem. J. Phys. A: Math. Gen. 28, 4751–4759 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fréville, A., Plateau, G.: The 0–1 bidimensional knapsack problem: Towards an efficient high-level primitive tool. J. Heuristics 2, 147–167 (1996)zbMATHCrossRefGoogle Scholar
  14. 14.
    Fréville, A.: The multidimensional 0–1 knapsack problem: An overview. Eur. J. Oper. Res. 155, 1–21 (2004)zbMATHCrossRefGoogle Scholar
  15. 15.
    Gavish, B., Pirkul, H.: Efficient algorithms for solving multiconstraint zero–one knapsack problems to optimality. Math. Program. 31, 78–105 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gilmore, P.C., Gomory, R.E.: The theory and computation of knapsack functions. Oper. Res. 14, 1045–1075 (1966)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  18. 18.
    Hanafi, S., Fréville, A.: An efficient tabu search approach for the 0–1 multidimensional knapsack problem. Eur. J. Oper. Res. 106, 659–675 (1998)zbMATHCrossRefGoogle Scholar
  19. 19.
    He, J., Miao, Z., Zhang, Z., Shi, X.: Solving multidimensional 0–1 knapsack problem by tissue P systems with cell division. In: Proceedings of the Fourth International Conference on Bio-Inspired Computing BIC–TA 2009, pp. 249–253 (2009)Google Scholar
  20. 20.
    Hill, R.R., Cho, Y.K., Moore, J.T.: Problem reduction heuristic for the 0–1 multidimensional knapsack problem. Comput. Oper. Res. 39, 19–26 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jiang, M., Wang, Y., Pfletschinger, S., Lagunas, M.A., Yuan, D.: Optimal Multiuser Detection with Artificial Fish Swarm Algorithm. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007, Part 22. CCIS, vol. 2, pp. 1084–1093. Springer, Heidelberg (2007)Google Scholar
  22. 22.
    Jiang, M., Mastorakis, N., Yuan, D., Lagunas, M.A.: Image Segmentation with Improved Artificial Fish Swarm Algorithm. In: Mastorakis, N., Mladenov, V., Kontargyri, V.T. (eds.) ECC 2008. LNEE, vol. 28, pp. 133–138. Springer, Heidelberg (2009)Google Scholar
  23. 23.
    Khuri, S., Bäck, T., Heitkötter, J.: The zero/one multiple knapsack problem and genetic algorithm. In: Proceedings of the 1994 ACM Symposium on Applied Computing, pp. 188–193 (1994)Google Scholar
  24. 24.
    Kong, M., Tian, P., Kao, Y.: A new ant colony optimization algorithm for the multidimensional knapsack problem. Comput. Oper. Res. 35, 2672–2683 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Li, H., Jiao, Y.-C., Zhang, L., Gu, Z.-W.: Genetic Algorithm Based on the Orthogonal Design for Multidimensional Knapsack Problems. In: Jiao, L., Wang, L., Gao, X.-b., Liu, J., Wu, F. (eds.) ICNC 2006, Part I. LNCS, vol. 4221, pp. 696–705. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Michalewicz, Z.: Genetic Algorithms+Data Structures=Evolution Programs. Springer, Berlin (1996)zbMATHGoogle Scholar
  27. 27.
    Petersen, C.C.: Computational experience with variants of the Balas algorithm applied to the selection of R&D projects. Manag. Sci. 13(9), 736–750 (1967)CrossRefGoogle Scholar
  28. 28.
    Rocha, A.M.A.C., Martins, T.F.M.C., Fernandes, E.M.G.P.: An augmented Lagrangian fish swarm based method for global optimization. J. Comput. Appl. Math. 235, 4611–4620 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Rocha, A.M.A.C., Fernandes, E.M.G.P., Martins, T.F.M.C.: Novel Fish Swarm Heuristics for Bound Constrained Global Optimization Problems. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 185–199. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Sakawa, M., Kato, K.: Genetic algorithms with double strings for 0–1 programming problems. Eur. J. Oper. Res. 144, 581–597 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Schilling, K.E.: The growth of m–constraint random knapsacks. Eur. J. Oper. Res. 46, 109–112 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Shih, W.: A branch and bound method for the multiconstraint zero–one knapsack problem. J. Oper. Res. Soc. 30, 369–378 (1979)zbMATHGoogle Scholar
  33. 33.
    Soyster, A.L., Lev, B., Slivka, W.: Zero–one programming with many variables and few constraints. Eur. J. Oper. Res. 2, 195–201 (1978)zbMATHCrossRefGoogle Scholar
  34. 34.
    Vasquez, M., Vimont, Y.: Improved results on the 0–1 multidimensional knapsack problem. Eur. J. Oper. Res. 165, 70–81 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Veni, K.K., Balachandar, S.R.: A new heuristic approach for large size zero–one multi knapsack problem using intercept matrix. Int. J. Comput. Math. Sci. 4(5), 259–263 (2010)Google Scholar
  36. 36.
    Wang, C.-R., Zhou, C.-L., Ma, J.-W.: An improved artificial fish swarm algorithm and its application in feed-forward neural networks. In: Proceedings of the 4th ICMLC, pp. 2890–2894 (2005)Google Scholar
  37. 37.
    Wang, X., Gao, N., Cai, S., Huang, M.: An Artificial Fish Swarm Algorithm Based and ABC Supported QoS Unicast Routing Scheme in NGI. In: Min, G., Di Martino, B., Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA Workshops 2006. LNCS, vol. 4331, pp. 205–214. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  38. 38.
    Weingartner, H.M., Ness, D.N.: Methods for the solution of the multidimensional 0/1 knapsack problem. Oper. Res. 15, 83–103 (1967)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Md. Abul Kalam Azad
    • 2
  • Ana Maria A. C. Rocha
    • 1
    • 2
  • Edite M. G. P. Fernandes
    • 2
  1. 1.Department of Production and SystemsUniversity of MinhoBragaPortugal
  2. 2.Algoritmi R&D CentreUniversity of MinhoBragaPortugal

Personalised recommendations