On the Complexity of a Mehrotra-Type Predictor-Corrector Algorithm

  • Ana Paula Teixeira
  • Regina Almeida
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7335)


Based on the good computational results of the feasible version of the Mehrotra’s predictor-corrector variant algorithm presented by Bastos and Paixão, in this paper we discuss its complexity. We prove the efficiency of this algorithm by showing its polynomial complexity and, consequently, its Q-linearly convergence.

We start by proving some technical results which are used to discuss the step size estimate of the algorithm.

It is shown that, at each iteration, the step size computed by this Mehrotra’s predictor-corrector variant algorithm is bounded below, for n ≥ 2, by \(\frac{1}{200 n^4};\) consequently proving that the algorithm has O(n 4 |log(ε)|) iteration complexity.


Linear Programming predictor-corrector variant interior-point methods Mehrotra-type algorithm polynomial complexity Q-linear convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almeida, R., Bastos, F., Teixeira, A.: On polinomiality of a predictor-corrector variant algorithm. In: International Conference on Numerical Analysis and Applied Mathematica 2010 - ICNAAM 2010. AIP Conference Proceedings, vol. 2, pp. 959–963. Springer, New York (2010)Google Scholar
  2. 2.
    Bastos, F.: Problemas de transporte e métodos de ponto interior, Dissertação de Doutoramento, Universidade Nova de Lisboa, Lisboa (1994)Google Scholar
  3. 3.
    Bastos, F., Paixão, J.: Interior-point approaches to the transportation and assignment problems on microcomputers. Investigação Operacional 13(1), 3–15 (1993)Google Scholar
  4. 4.
    Freund, R.W., Jarre, F.: A QMR-based interior-point algorithm for solving linear programs, Numerical Analysis Manuscript, 94-19. AT&T Bell Laboratories, Murray Hill, N.J. (1994)Google Scholar
  5. 5.
    Güler, O., Ye, Y.: Convergence behavior of interior-point algorithms. Mathematical Programming 60, 215–228 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Karmarkar, N.K.: A new polinomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Kojima, M., Megiddo, N., Mizuno, S.: A primal-dual infeasible-interior point algorithm for linear programming. Mathematical Programming, Series A 61, 261–280 (1993)MathSciNetGoogle Scholar
  8. 8.
    Lustig, I.J., Marsten, R.E., Shanno, D.F.: Computational experience with a primal-dual interior point method for linear programming. Linear Algebra and Its Applications 152, 191–222 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lustig, I.J., Marsten, R.E., Shanno, D.F.: On implementing Mehrotra’s predictor-corrector interior-point method for linear programming. SIAM Journal on Optimization 2(3), 435–449 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Lustig, I.J., Marsten, R.E., Shanno, D.F.: Interior point method for linear programming: Computational state of the art. ORSA Journal on Computing 6, 1–14 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    McShane, K.A., Monma, C.L., Shanno, D.F.: An implementation of a primal-dual interior point method for linear programming. ORSA Journal on Computing 1, 70–83 (1989)zbMATHCrossRefGoogle Scholar
  12. 12.
    Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optimization 2, 575–601 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Salahi, M., Peng, J., Terlaky, T.: On Mehrotra-Type Predictor-Corrector Algorithms. SIAM Journal on Optimization 18(4), 1377–1397 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)zbMATHCrossRefGoogle Scholar
  15. 15.
    Ye, Y.: Interior Point Algorithms, Theory and Analysis. John Wiley and Sons, Chichester (1997)zbMATHCrossRefGoogle Scholar
  16. 16.
    Zhang, Y., Zhang, D.: On polynomiality of the Mehrotra-type predictor-corrector interior-point algorithms. Mathematical Programming 68, 303–318 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Zhang, Y., Tapia, R.A., Dennis, J.E.: On the superlinear and quadratic convergence of primal-dual interior point linear programming algorithms. SIAM J. Optimization 2, 304–324 (1992)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ana Paula Teixeira
    • 1
    • 2
  • Regina Almeida
    • 1
    • 3
  1. 1.Department of MathematicsUniversity of Trás-os-Montes e Alto DouroVila RealPortugal
  2. 2.CIO. Faculty of SciencesUniversity of LisbonPortugal
  3. 3.CIDMAUniversity of AveiroPortugal

Personalised recommendations