Advertisement

On Solving the Profit Maximization of Small Cogeneration Systems

  • Ana C. M. Ferreira
  • Ana Maria A. C. Rocha
  • Senhorinha F. C. F. Teixeira
  • Manuel L. Nunes
  • Luís B. Martins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7335)

Abstract

Cogeneration is a high-efficiency technology that has been adapted to small and micro scale applications. In this work, the development and test of a numerical optimization model is carried out in order to implement an analysis that will lead to the optimal design of a small cogeneration system. The main idea is the integration of technical and economic aspects in the design of decentralized energy production considering the requirements for energy consumption for the building sector. The nonlinear optimization model was solved in MatLab®environment using two local optimization methods: the Box and the SQP method. The optimal solution provided a positive annual worth and disclosed reasonable values for the decision variables of the thermo-economic model. Both methods converged for the same solution, demonstrating the validity of the implemented approach. This study confirmed that the use of numerical optimization models is of utmost importance in the assessment of energy systems sustainability.

Keywords

cogeneration model thermoeconomics numerical optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alanne, K., Saari, A.: Sustainable small-scale CHP technologies for buildings: the basis for multi-perspective decision-making. Renew Sustain Energy Review 8(5), 401–431 (2004)CrossRefGoogle Scholar
  2. 2.
    Baños, R., Manzano-Agugliaro, F., Montoya, F.G., Gil, C., Alcayde, A., Gómez, J.: Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews 15, 1753–1766 (2011)CrossRefGoogle Scholar
  3. 3.
    Bejan, A., Tsatsaronis, G., Moran, M.: Thermal design and optimization. John Wiley and Sons Inc. (1996)Google Scholar
  4. 4.
    Box, M.J.: A new method of constrained optimization and a comparison with other method. Computer Journal 8(1), 42–52 (1965)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Directive 2002/91/EC. Directive of the European Parliament and of the Council. On the energy performance of buildings. Official Journal of the European Union, December 16 (2002)Google Scholar
  6. 6.
    Directive 2004/8/EC. Directive of the European Parliament and of the Council, On the promotion of cogeneration based on a useful heat demand. Official Journal of the European Union, February 11 (2004)Google Scholar
  7. 7.
    Directive 2010/31/EU. Directive of the European Parliament and of the Council, On the energy performance of buildings (recast). Official Journal of the European Union, May 19 (2010)Google Scholar
  8. 8.
    El-Sayed, Y.M.: A Decomposition strategy for the thermoeconomic optimization of a given system configuration. Journal Energy Resource Technology 111(3), 41–47 (1989)MathSciNetGoogle Scholar
  9. 9.
    Gogus, Y.A.: Thermoeconomic Optimization. International Journal of Energy Research 29, 559–580 (2005)CrossRefGoogle Scholar
  10. 10.
    Lahdelma, R., Hakonen, H.: An efficient linear programming algorithm for combined heat and power production. European Journal of Operational Research 148, 141–151 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Leão, C.P., Teixeira, S.C.F.T., Silva, A.M., Nunes, M.L., Martins, L.A.S.B.: Thermoeconomical optimization in the design of small scale and residential cogeneration systems. In: Mechanical Engineering Congress & Exposition, IMECE 2009, Florida, USA, 13089, 5 pages (2009)Google Scholar
  12. 12.
    Marques, F.M.: Análise termo-económica no desenvolvimento de sistemas de cogeração de pequena escala para edifícios, Master Thesis in Mechanical Engineering, University of Minho, Portugal (2011) (in portuguese)Google Scholar
  13. 13.
    Martins, L.B., Ferreira A.C.M., Nunes, M.L., Leão, C.P., Teixeira, S.F.C.F., Marques, F., Teixeira, J.C.F.: Optimal Design of Micro-Turbine Cogeneration Systems for the Portuguese Buildings Sector. In: Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition, IMECE 2011–64470, (DVD), Denver, Colorado, USA, 8 pages (2011)Google Scholar
  14. 14.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Science and Business Media LLC (2006)Google Scholar
  15. 15.
    Onovwiona, H., Ugursal, V.: Residential cogeneration systems: a review of the current technology. Renewable and Sustainable Energy Reviews 10, 389–431 (2006)CrossRefGoogle Scholar
  16. 16.
    Pehnt, M.: Environmental impacts of distributed energy systems-The case of micro cogeneration. Environmental Science & Policy 11(1), 25–37 (2008)CrossRefGoogle Scholar
  17. 17.
    Rao, S.S.: Engineering Optimization Theory and Practice, ch. I, 4th edn. John Wiley & Sons, Inc. (2009)Google Scholar
  18. 18.
    Rodriguez-Toral, M.A., Morton, W., Mitchell, D.R.: Using new packages for modelling, equation oriented simulation and optimization of a cogeneration plant. Chemical Engineering 24, 2667–2685 (2000)Google Scholar
  19. 19.
    Valdés, M., Duran, M.D., Rovira, A.: Thermoeconomic optimization of combined cycle gas turbine power plants using genetic algorithms. Applied Thermal Engineering 23, 2169–2182 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ana C. M. Ferreira
    • 1
  • Ana Maria A. C. Rocha
    • 2
  • Senhorinha F. C. F. Teixeira
    • 1
  • Manuel L. Nunes
    • 1
  • Luís B. Martins
    • 3
  1. 1.CITEPE R&D CentreUniversity of MinhoPortugal
  2. 2.Algoritmi R&D CentreUniversity of MinhoPortugal
  3. 3.Mechanical & Materials Technologies R&D CentreUniversity of MinhoPortugal

Personalised recommendations