Advertisement

Influence of Topology on Mobility and Transmission Capacity of Human-Based DTNs

  • Danilo A. Moschetto
  • Douglas O. Freitas
  • Lourdes P. P. Poma
  • Ricardo Aparecido Perez de Almeida
  • Cesar A. C. Marcondes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7336)

Abstract

Casual encounters among people have been studied as a means to deliver messages indirectly, using delay tolerant networks (DTNs). This work analyses the message forwarding in human-based DTNs, focusing on the topology of the mobility area. By using simulations, we evaluate the influence of the environment connectivity on the network performance. Several parameters have also been considered: network density, forwarding algorithm and storage capacity. In general, considering the already limited capacity of mobile devices and a reduced network density, the mobility environment interconnectivity seems to have a relevant effect in message delivery rates.

Keywords

Node Mobility Buffer Size Mobility Model Node Density Transmission Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design. ACM Transactions on Computer Systems (TOCS) 2(4), 277–288 (1984), http://dl.acm.org/citation.cfm?doid=357401.357402 CrossRefGoogle Scholar
  2. 2.
    Spyropoulos, T., Fdida, S., Kirkpatrick, S.: Future Internet: fundamentals and measurement. In: Proceedings of ACM SIGCOMM Computer Communication Review, Tokyo, Japan, pp. 101–106 (2007), http://doi.acm.org/10.1145/1232919.1232934
  3. 3.
    Fall, K., Farrell, S.: DTN: an architectural retrospective. IEEE Journal on Selected Areas in Communications 26, 828–836 (2008), http://dx.doi.org/10.1109/JSAC.2008.080609 CrossRefGoogle Scholar
  4. 4.
    Juang, P., et al.: Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet. In: Proceedings of International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), San Jose, CA, USA, vol. 30, pp. 96–107 (2002), http://dx.doi.org/10.1145/635506.605411
  5. 5.
    Shah, R., Roy, S., Jain, S., Brunette, W.: Data MULEs: Modeling a Three-tier Architecture for Sparse Sensor Networks. In: Proceedings of 1st IEEE International Workshop on Sensor Network Protocols and Applications, Anchorage, AK, USA, pp. 30–41 (2003), http://dx.doi.org/10.1109/SNPA.2003.1203354
  6. 6.
    Burgess, J., Gallagher, B., Jensen, D., Levine, B.N.: MaxProp: Routing for vehicle-based disruption-tolerant networks. In: Proceedings of 25th IEEE INFOCOM, Barcelona, Spain, pp. 1–11 (2006), http://dx.doi.org/10.1109/INFOCOM.2006.228
  7. 7.
    Al Hanbali, A., de Haan, R., Boucherie, R.J., van Ommeren, J.-K.: A Tandem Queueing Model for Delay Analysis in Disconnected Ad Hoc Networks. In: Al-Begain, K., Heindl, A., Telek, M. (eds.) ASMTA 2008. LNCS, vol. 5055, pp. 189–205. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-68982-9_14 CrossRefGoogle Scholar
  8. 8.
    Oliveira, E., Silva, E., Albuquerque, C.V.N.: Promovendo adaptação a contextos em DTNs. In: Proceedings of Simpósio Brasileiro de Redes de Computadores, Campo Grande, MS, Brazil (2011), http://sbrc2011.facom.ufms.br/files/main/ST03_1.pdf
  9. 9.
    Garetto, M., Giaccone, P., Leonardi, E.: On the Capacity Region of MANET: Scheduling and Routing Strategy. IEEE Transactions on Vehicular Technology 58, 1930–1941 (2009), http://dx.doi.org/10.1109/TVT.2008.2004621 CrossRefGoogle Scholar
  10. 10.
    Piorkowski, M.: Mobility-centric geocasting for mobile partitioned networks. In: Proceedings of IEEE International Conference on Network Protocols, Orlando, FL, USA, pp. 228–237 (2008), http://dx.doi.org/10.1109/ICNP.2008.4697041
  11. 11.
    Sandulescu, G., Schaffer, P., Nadjm-Tehrani, S.: Vicinity resource cartography for delay-tolerant networks: A holistic perspective. In: Proceedings of Wireless Days (WD), 2010 IFIP, Venice, Italy, pp. 1–7 (2010), http://dx.doi.org/10.1109/WD.2010.5657725
  12. 12.
    Keränen, A., Ott, J., Kärkkäinen, T.: The ONE Simulator for DTN Protocol Evaluation. In: Proceedings of the 2nd International Conference on Simulation Tools and Techniques, Rome, Italy, pp. 55:1–55:10 (2009), http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5674
  13. 13.
    Mayer, C.P.: osm2wkt - OpenStreetMap to WKT Conversion (November 2010), http://www.tm.kit.edu/~mayer/osm2wkt/
  14. 14.
    Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks. Technical Report CS-2000-06, Duke University (2000), http://issg.cs.duke.edu/epidemic/epidemic.pdf
  15. 15.
    Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S.J., Chong, S.: On the Levy-walk Nature of Human Mobility. IEEE/ACM Transactions on Networking, 630–643 (2011), http://dx.doi.org/10.1109/TNET.2011.2120618
  16. 16.
    Lindgren, A., Doria, A., Schelén, O.: Probabilistic Routing in Intermittently Connected Networks. ACM SIGMOBILE Mobile Computing and Communications Review 7, 19–20 (2003), http://dx.doi.org/10.1145/961268.961272 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Danilo A. Moschetto
    • 2
  • Douglas O. Freitas
    • 1
  • Lourdes P. P. Poma
    • 1
  • Ricardo Aparecido Perez de Almeida
    • 1
  • Cesar A. C. Marcondes
    • 1
  1. 1.Computer Science DepartmentFederal University of São Carlos (UFSCar)Brazil
  2. 2.Instituto Federal de EducaçãoCiência e Tecnologia de São Paulo - IFSPBrazil

Personalised recommendations