Advertisement

An Adaptive Mesh Algorithm for the Numerical Solution of Electrical Models of the Heart

  • Rafael S. Oliveira
  • Bernardo M. Rocha
  • Denise Burgarelli
  • Wagner MeiraJr.
  • Rodrigo W. dos Santos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7333)

Abstract

Computer models have become valuable tools for the study and comprehension of the complex phenomena of cardiac electrophysiology. However, the high complexity of the biophysical processes translates into complex mathematical and computational models. In this paper we evaluate a numerical algorithm based on mesh adaptivity and finite volume method aiming to accelerate these simulations. This is a very attractive approach since the spreading electrical wavefront corresponds only to a small fraction of the cardiac tissue. Usually, the numerical solution of the partial differential equations that model the phenomenon requires very fine spatial discretization to follow the wavefront, which is approximately 0.2 mm. The use of uniform meshes leads to high computational cost as it requires a large number of mesh points. In this sense, the tests reported in this work show that simulations of two-dimensional models of cardiac tissue have been accelerated by more than 80 times using the adaptive mesh algorithm, with no significant loss in accuracy.

Keywords

Execution Time Cardiac Tissue Spatial Discretization Cell Node Cardiac Electrophysiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bendahmane, M., Bürger, R., Ruiz-Baier, R.: A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology. Numerical Methods for Partial Differential Equations 26(6), 1377–1404 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Burgarelli, D., Kischinhevsky, M.: Efficient numerical simulation of a simplified thermoacoustic engine with new adaptive mesh refinement tools. Computational Methods in Engineering 99 (1999)Google Scholar
  3. 3.
    Burgarelli, D., Kischinhevsky, M., Biezuner, R.J.: A new adaptive mesh refinement strategy for numerically solving evolutionary pde’s. J. Comput. Appl. Math. 196, 115–131 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cherry, E.M., Greenside, H.S., Henriquez, C.S.: Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method. Chaos: An Interdisciplinary Journal of Nonlinear Science 13(3), 853–865 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Coudiere, Y., Pierre, C., Turpault, R.: A 2d/3d finite volume method used to solve the bidomain equations of electrocardiology. In: Proceedings of Algoritmy, pp. 1–10 (2009)Google Scholar
  6. 6.
    Sato, D., Xie, Y., Weiss, J.N., Qu, Z., Garfinkel, A., Sanderson, A.R.: Acceleration of cardiac tissue simulation with graphic processing units. Med. Biol. Eng. Comput. 47, 1011–1015 (2009)CrossRefGoogle Scholar
  7. 7.
    Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, vol. 7, pp. 713–1018 (2000)Google Scholar
  8. 8.
    Franzone, P., Deuflhard, P., Erdmann, B., Lang, J., Pavarino, L.: Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM Journal on Scientific Computing 28(3), 942 (2007)CrossRefGoogle Scholar
  9. 9.
    Gima, K., Rudy, Y.: Ionic current basis of electrocardiographic waveforms: A model study. Circulation Research 90, 889–896 (2002)CrossRefGoogle Scholar
  10. 10.
    Harrild, D., Henriquez, C.: A finite volume model of cardiac propagation. Annals of Biomedical Engineering 25(2), 315–334 (1997)CrossRefGoogle Scholar
  11. 11.
    Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 117, 500–544 (1952)Google Scholar
  12. 12.
    Hunter, P.J., Borg, T.K.: Integration from proteins to organs: the physiome project. Nature Reviews Molecular Cell Biology 4(3), 237–243 (2003)CrossRefGoogle Scholar
  13. 13.
    Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction. Circ. Res. 68(6), 1501–1526 (1991)CrossRefGoogle Scholar
  14. 14.
    OMS: Organização Mundial da Saúde. Publicação Eletron̂ica. Uĺtimo acesso em 17 de Agosto de 2011 (2010), http://www.who.int/
  15. 15.
    Plonsey, R.: Bioelectric sources arising in excitable fibers (ALZA lecture). Ann. Biomed. Eng. 16(6), 519–546 (1988)CrossRefGoogle Scholar
  16. 16.
    Rocha, B.M., Campos, F.O., Amorim, R.M., Plank, G., dos Santos, R.W., Liebmann, M., Haase, G.: Accelerating cardiac excitation spread simulations using graphics processing units. Concurrency and Computation: Practice and Experience (2010)Google Scholar
  17. 17.
    Sachse, F.B.: Computational cardiology: modeling of anatomy, electrophysiology, and mechanics, vol. 2966. Springer (2004)Google Scholar
  18. 18.
    Weber dos Santos, R., Plank, G., Bauer, S., Vigmond, E.J.: Preconditioning Techniques for the Bidomain Equations. Lecture Notes In Computational Science And Engineering 40, 571–580 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Southern, J., Gorman, G., Piggott, M., Farrell, P.: Parallel anisotropic mesh adaptivity with dynamic load balancing for cardiac electrophysiology. Journal of Computational Science 3, 8–16 (2012)CrossRefGoogle Scholar
  20. 20.
    Southern, J., Gorman, G., Piggott, M., Farrell, P., Bernabeu, M., Pitt-Francis, J.: Simulating cardiac electrophysiology using anisotropic mesh adaptivity. Journal of Computational Science 1(2), 82–88 (2010)CrossRefGoogle Scholar
  21. 21.
    Sundnes, J.: Computing the electrical activity in the heart. Springer (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rafael S. Oliveira
    • 1
    • 2
  • Bernardo M. Rocha
    • 3
    • 4
  • Denise Burgarelli
    • 5
  • Wagner MeiraJr.
    • 2
  • Rodrigo W. dos Santos
    • 3
  1. 1.Departamento de Ciência da ComputaçãoUniversidade Federal de São João de ReiBrazil
  2. 2.Departamento de Ciência da ComputaçãoUniversidade Federal de Minas GeraisBrazil
  3. 3.Departamento de Ciência da Computação e Programa em Modelagem ComputacionalUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  4. 4.Laboratório Nacional de Computação CientíficaBrazil
  5. 5.Departamento de MatemáticaUniversidade Federal de Minas GeraisBrazil

Personalised recommendations