Grid Enabled High Level ab initio Electronic Structure Calculations for the N2+N2 Exchange Reaction

  • Marco Verdicchio
  • Leonardo Pacifici
  • Antonio Laganà
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7333)

Abstract

A Grid enabled implementation of the first two blocks of an ab initio simulator of molecular systems is described by considering as a benchmark case the N2(\({}^1{\Sigma}_g^+\)) + N2(\({}^1{\Sigma}_g^+\)) system. Following the related workflow and thanks to the use of the Grid, first a potential energy surface allowing the N atom reactive exchange has been generated by performing high level ab initio (MP2 and Coupled Cluster) calculations for a large number of geometries, then a global fit of the ab initio points has been performed.

Keywords

Potential Energy Surface Internuclear Distance Potential Energy Curve Electronic Structure Calculation Nitrogen Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nesbitt, D.J.: High-resolution infrared spectroscopy of weakly bound molecular complexes. Chem. Rev. 88, 843–870 (1988)CrossRefGoogle Scholar
  2. 2.
    Weber, A.: Structure and Dynamics of Weakly Bound Molecular Complexes (NATO Science Series C) (1987)Google Scholar
  3. 3.
    Capitelli, M.: Non-equilibrium vibrational kinetics. Springer, Berlin (1986)CrossRefGoogle Scholar
  4. 4.
    Armenise, I., Capitelli, M., Garcia, E., Gorse, C., Laganà, A., Longo, S.: Deactivation dynamics of vibrationally excited nitrogen molecules by nitrogen atoms. Effects on non-equilibrium vibrational distribution and dissociation rates of nitrogen under electrical discharges. Chem. Phys. Lett. 200, 597 (1992)CrossRefGoogle Scholar
  5. 5.
    Knauth, D.C., Andersson, B.G., McCandliss, S.R., Moos, H.W.: The Interstellar N2 Abundance toward HD 124314 from Far-Ultraviolet Observations. Nature 429, 636 (2004)CrossRefGoogle Scholar
  6. 6.
    Raich, J.C., Gillis, N.S.: The anisotropic interaction between nitrogen molecules from solid state data. J. Chem. Phys. 66, 846 (1977)CrossRefGoogle Scholar
  7. 7.
    MacRury, T.B., Steele, W.A., Berne, B.J.: Intermolecular potential models for anisotropic molecules, with applications to N2, CO2, and benzene. J. Chem. Phys. 64, 1288 (1976)CrossRefGoogle Scholar
  8. 8.
    Cheung, P.S.Y., Powles, J.G.: The properties of liquid nitrogen V. Computer simulation with quadrupole interaction. Mol. Phys. 32, 1383 (1976)CrossRefGoogle Scholar
  9. 9.
    Cheung, P.S.Y., Powles, J.G.: The properties of liquid nitrogen. Mol. Phys. 30, 921 (1975)CrossRefGoogle Scholar
  10. 10.
    Evans, D.J.: Transport properties of homonuclear diatomics I. Dilute gases. Mol. Phys. 34, 103 (1977)CrossRefGoogle Scholar
  11. 11.
    Cappelletti, D., Vecchiocattivi, F., Pirani, F., Heck, E.L., Dickinson, A.S.: An Intermolecular potential for Nitrogen from a multi-property analysis. Mol. Phys. 93, 485 (1998)CrossRefGoogle Scholar
  12. 12.
    Aquilanti, V., Bartolomei, M., Cappelletti, D., Caramona-Novillo, E., Pirani, F.: The N2-N2 system: An experimental potential energy surface and calculated rotovibrational levels of the molecular nitrogen dimer. J. Chem. Phys. 93, 485 (1998)Google Scholar
  13. 13.
    Gomez, L., Bussery-Honvault, B., Cauchy, T., Bartolomei, M., Cappelletti, D., Pirani, F.: Global fits of new intermolecular ground state potential energy surfaces for N2-H2 and N2-N2 van der Waals dimers. Chem. Phys. Lett. 445, 99–107 (2007)CrossRefGoogle Scholar
  14. 14.
    van der Avoid, A., Wormer, P.E.S., Jansen, A.P.J.: An improved intermolecular potential for nitrogen. J. Chem. Phys. 84, 1629–1635 (1986)CrossRefGoogle Scholar
  15. 15.
    Cappelletti, D., Vecchiocattivi, F., Pirani, F., McCourt, F.R.W.: Glory structure in the N2-N2 total integral scattering cross section. A test for the intermolecular potential energy surface. Chem. Phys. Lett. 248, 237–243 (1996)CrossRefGoogle Scholar
  16. 16.
    Huo, S.W.M., Green, S.: Quantum calculations for rotational energy transfer in nitrogen molecule collisions. J. Chem. Phys. 104, 7572–7589 (1996)CrossRefGoogle Scholar
  17. 17.
    Stallcop, J.R., Partridge, H.: The N2-N2 potential energy surface. Chem. Phys. Lett. 281, 212–220 (1997)CrossRefGoogle Scholar
  18. 18.
    Wada, A., Kanamori, H., Iwata, S.: Ab Initio MO studies of van der Waals molecule (N2)2: Potential energy surface and internal motion. J. Chem. Phys. 109, 9434–9438 (1998)CrossRefGoogle Scholar
  19. 19.
    Couronne, O., Ellinger, Y.A.: An ab initio and DFT study of (N2)2 dimers. Chem. Phys. Lett. 306, 71–77 (1999)CrossRefGoogle Scholar
  20. 20.
    Leonhard, K., Deiters, U.K.: Monte Carlo Simulations of Nitrogen Using an Ab Initio Potential. Mol. Phys. 100, 2571–2585 (2002)CrossRefGoogle Scholar
  21. 21.
    Karimi Jafari, M.H., Maghari, A., Shahbazian, S.: An improved ab initio potential energy surface for N2-N2. Chem. Phys. 314, 249–262 (2005)CrossRefGoogle Scholar
  22. 22.
    Costantini, A., Gervasi, O., Manuali, C., Lago, N.F., Rampino, S., Laganà, A.: COMPCHEM: progress towards GEMS a Grid Empowered Molecular Simulator and beyond. Journal of Grid Computing 8, 571–586 (2010)CrossRefGoogle Scholar
  23. 23.
    Laganá, A., Balucani, N., Crocchianti, S., Casavecchia, P., Garcia, E., Saracibar, A.: An Extension of the Molecular Simulator GEMS to Calculate the Signal of Crossed Beam Experiments. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 453–465. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    EGI-InSPIRE project RI-261323, http://www.egi.eu (last access: January 11, 2012)
  25. 25.
    EGI, http://uf2011.egi.eu/ (last access December 14, 2011)
  26. 26.
    IGI, http://grid.infn.it/ (last access December 14, 2011)
  27. 27.
    COMPCHEM, http://compchem.unipg.it (last access November 14, 2011)
  28. 28.
    Manuali, C., Costantini, A., Laganà, A., Cecchi, M., Ghiselli, A., Carpené, M., Rossi, E.: Efficient Workload Distribution Bridging HTC and HPC in Scientific Computing. In: Murgante, B., et al. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333, pp. 348–360. Springer, Heidelberg (2012)Google Scholar
  29. 29.
    Hay, P.J., Pack, R.T., Martin, R.L.: Electron correlation effects on the N2-N2 interaction. J. Chem. Phys. 81, 1360–1372 (1984)CrossRefGoogle Scholar
  30. 30.
    Feller, D.: The Role of Databases in Support of Computational Chemistry Calculations. J. Chem. Phys. 17, 1571–1586 (1996)Google Scholar
  31. 31.
    Schuchardt, K., Didier, B., Elsethagen, T., Sun, L., Gurumoorthi, V., Chase, J., Li, J., Windus, T.: Basis Set Exchange: A Community Database for Computational Sciences. J. Chem Inf. Model. 47, 1045–1052 (2007)CrossRefGoogle Scholar
  32. 32.
    Møller, C., Plesset, M.S.: Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 46, 618 (1934)MATHCrossRefGoogle Scholar
  33. 33.
    Boys, S.F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)CrossRefGoogle Scholar
  34. 34.
    Piecuch, P., Kucharski, S.A., Kowalski, K., Musial, M.: Efficient computer implementation of the renormalized coupled-cluster methods: The R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches. Comput. Phys. Comm. 149, 71–96 (2002)CrossRefGoogle Scholar
  35. 35.
    Bentz, J.L., Olson, R.M., Gordon, M.S., Schmidt, M.W., Kendall, R.A.: Coupled cluster algorithms for networks of shared memory parallel processors. Comput. Phys. Comm. 176, 589–600 (2007)MATHCrossRefGoogle Scholar
  36. 36.
    Olson, R.M., Bentz, J.L., Kendall, R.A., Schmidt, M.W., Gordon, M.S.: A Novel Approach to Parallel Coupled Cluster Calculations: Combining Distributed and Shared Memory Techniques for Modern Cluster Based Systems. J. Comput. Theo. Chem. 3, 1312–1328 (2007)CrossRefGoogle Scholar
  37. 37.
    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.J., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., Montgomery, J.A.: General atomic and molecular electronic structure system. J. Comp. Chem. 14, 1347–1363 (1993)CrossRefGoogle Scholar
  38. 38.
    Gordon, M.S., Schmidt, M.W.: Theory and Applications of Computational Chemistry, the first forty years (2005)Google Scholar
  39. 39.
    Laganà, A.: Potential surface graphical study for chemical reactions. Computer and Chemistry 4, 137–143 (1980)CrossRefGoogle Scholar
  40. 40.
    Lee, T.J., Rice, J.E.: Theoretical characterization of tetrahedral N4. J. Chem. Phys. 94, 1215–1221 (1991)CrossRefGoogle Scholar
  41. 41.
    Manuali, C., Laganà, A.: A New Collaborative Framework for a Web Service Approach to Grid Empowered Calculations. Future Generation of Computer Systems 27(3), 315–318 (2011)CrossRefGoogle Scholar
  42. 42.
    Hay, P.J., Pack, R.T., Martin, R.L.: Electron correlation effects on the N2-N2 interaction. J. Chem. Phys. 81, 1360–1372 (1984)CrossRefGoogle Scholar
  43. 43.
    Lee, T.J., Taylor, P.R.: A Diagnostic for Determining the Quality of Single-Reference Electron Correlation Methods. Int. J. Quant. Chem. S23, 199–207 (1989)Google Scholar
  44. 44.
    Sorbie, K.S., Murrell, J.N.: Analytical potentials for triatomic molecules from spectroscopic data. Mol. Phys. 52, 1387 (1975)CrossRefGoogle Scholar
  45. 45.
    Aguado, A., Tablero, C., Paniagua, M.: Global fit of ab initio potential energy surfaces: II.1. Tetraatomic systems ABCD. Comput. Phys. Comm. 134, 97 (2001)MATHCrossRefGoogle Scholar
  46. 46.
    Aguado, A., Suarez, C., Paniagua, M.: Accurate global fit of the H4 potential energy surface. J. Chem. Phys. 101, 404–4010 (1994)CrossRefGoogle Scholar
  47. 47.
    Garcia, E., Saracibar, A., Gomez-Carrasco, S., Laganà, A.: Modelling the global potential energy surface of the N + N2 reaction from ab initio data. Phys. Chem. Chem. Phys. 10, 2552–2558 (2008)CrossRefGoogle Scholar
  48. 48.
    Caridade, P.J.S.B., Galvao, B.R.L., Varandas, A.J.C.: Quasiclassical Trajectory Study of Atom-Exchange and Vibrational Relaxation Processes in Collisions of Atomic and Molecular Nitrogen. J. Phys. Chem. A 114, 6063–6070 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marco Verdicchio
    • 1
  • Leonardo Pacifici
    • 1
  • Antonio Laganà
    • 1
  1. 1.Department of ChemistryUniversity of PerugiaPerugiaItaly

Personalised recommendations