Advertisement

An Overview of Procedures for Refining Triangulations

  • Sanderson L. Gonzaga de Oliveira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7333)

Abstract

In this paper, a list of procedures for refining triangulations and other related issues is presented. The wide variety of processes in order to refine triangles in a meshed geometry is placed in perspective. Moreover, the focus of this overview is strictly on adaptive triangle partition and collapse operators using mesh refinement procedures and some associated algorithms.

Keywords

Triangulations triangle subdivision mesh generation computational geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babuska, I., Aziz, A.K.: On the angle condition in the finite element method. SIAM Journal on Numerical Analysis 13, 214–226 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bank, R.E.: PLTMG: A Software Package for Solving Elliptic Partial Differential Equations Users’ Guide 10.0. Department of Mathematics, University of California at San Diego (September 2007)Google Scholar
  3. 3.
    Bank, R.E., Sherman, A.H.: The use of adaptive grid refinement for badly behaved elliptic partial differential equations. In: Advances in Computer Methods for Partial Differential Equations III. IMACS, pp. 33–39 (1979)Google Scholar
  4. 4.
    Bank, R.E., Sherman, A.H.: An adaptive, multilevel method for elliptic boundary value problems. Computing 26, 91–105 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bank, R.E., Sherman, A.H., Weiser, A.: Refinement algorithms and data structures for regular local mesh refinement. In: Stepleman, R.S. (ed.) IMACS Conference, Scientific Computing, vol. 1, pp. 3–17. North Holland, Amsterdam (1983)Google Scholar
  6. 6.
    Bell, S.B.M., Diaz, B.M., Holroyd, F., Jackson, M.J.: Spatially referenced methods of processing raster and vector data. I. and V. Comp. 1(4), 211–220 (1983)Google Scholar
  7. 7.
    Bolz, J., Schröder, P.: Rapid evaluation of catmull-clark subdivision surfaces. In: Proceeding of the Seventh International Conference on 3D Web Technology, pp. 11–17. ACM Press (2002)Google Scholar
  8. 8.
    Danovaro, E., De Floriani, L., Magillo, P., Puppo, E., Sobrero, D.: Computer Graphics in Italy - Level-of-detail for data analysis and exploration: A historical overview and some new perspectives. Computers & Graphics 30, 334–344 (2006)CrossRefGoogle Scholar
  9. 9.
    De Floriani, L., Falcidieno, B., Nagy, G., Pienovi, C.: A hierarchical structure for surface approximation. Computers & Graphics 8(2), 183–193 (1984)CrossRefGoogle Scholar
  10. 10.
    De Floriani, L., Kobbelt, L., Puppo, E.: A Survey on Data Structures for Level-Of-Detail Models. In: Dodgson, N.A., Floater, M., Sabin, M. (eds.) Advances in Multiresolution for Geometric Modelling. Series in Mathematics and Visualization, pp. 49–74. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Dodgson, N.A., Ivrissimtzis, I.P., Sabin, M.A.: Characteristics of dual triangular \(\sqrt{3}\) subdivision. In: Cohen, A., Merrien, J.-L., Schumaker, L.L. (eds.) Curve and Surface Fitting: Saint-Malo, pp. 119–128 (2002)Google Scholar
  12. 12.
    Dyn, N., Levin, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. on Graph. 9(2), 160–169 (1990)zbMATHCrossRefGoogle Scholar
  13. 13.
    Evans, W., Kirkpatrick, D., Townsend, G.: Right-triangulated irregular networks. Algorithmica 30, 264–286 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Faugeras, O., Hebert, M., Mussi, P., Boissonnat, J.-D.: Polyhedral approximation of 3-d objects without holes. Comp. Vision, Graph., and I. Proc. 25, 169–183 (1984)CrossRefGoogle Scholar
  15. 15.
    Fried, I.: Condition of finite element matrices generated from nonuniform meshes. American Institute of Aeronautics and Astronautics Journal 10, 219–221 (1972)zbMATHCrossRefGoogle Scholar
  16. 16.
    Garland, M.: Eurographics 99. In: Multiresolution Modeling: Survey & Future Opportunities. In State of the Art Report, pp. 111–131 (September 1999)Google Scholar
  17. 17.
    Gómez, D., Guzmán, A.: Digital model for three-dimensional surface representation. Geo-Processing 1, 53–70 (1979)Google Scholar
  18. 18.
    Guéziec, A.: Surface simplification with variable tolerance. In: Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery (MRCAS 1995), Baltimore, MD, pp. 132–139 (November 1995)Google Scholar
  19. 19.
    Guéziec, A.: Surface simplification inside a tolerance volume. Technical report, RC 20440, I.B.M. T.J. Watson Research Center (1996)Google Scholar
  20. 20.
    Guéziec, A., Hummel, R.: Exploiting triangulated surface extraction using tetrahedral decomposition. IEEE Transactions on Visualization and Computer Graphics 1(4), 328–342 (1995)CrossRefGoogle Scholar
  21. 21.
    Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithms. Technical report, Carnegie Mellon Univ.-Dep. of Comp. Sc., May 1 (1997)Google Scholar
  22. 22.
    Hoppe, H.: Progressive meshes. In: SIGGRAPH 1996 Proc., pp. 99–108 (1996)Google Scholar
  23. 23.
    Hoppe, H., De Rose, T., Duchamp, T., Mc-Donald, J., Stuetzle, W.: Mesh optimization. In: Computer Graphics, SIGGRAPH 1993 Proc., pp. 19–26 (1993)Google Scholar
  24. 24.
    Ivrissimtzis, I.P., Dodgson, N.A., Sabin, M.A.: A generative classification of subdivision schemes with lattice transformations. Technical Report 542, University of Cambridge Computer Laboratory (2002)Google Scholar
  25. 25.
    Jones, M.T., Plassmann, P.E.: Adaptive refinement of unstructured finite-element meshes. Finite Elements in Analysis and Design 25(1-2), 41–60 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Kearfott, R.B.: Computing degree of maps and a generalized method of bisection. PhD thesis, University of Utah (1977)Google Scholar
  27. 27.
    Kearfott, R.B.: An efficient degree-computing method for a generalized method of bisection. Numerische Mathematik 32, 109–127 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Kobbelt, L.: \(\sqrt{3}\) subdivision. In: Proc. of the SIGGRAPH 2000, pp. 103–112 (2000)Google Scholar
  29. 29.
    Labsik, U., Greiner, G.: Interpolatory \(\sqrt{3}\) subdivision. EUROGraphics 2000, Computer Graphics Forum 19(3), 131–138 (2000)CrossRefGoogle Scholar
  30. 30.
    Laves, F.: Ebenenteilung und koordinationszahl. Zeitschrift fúr Kristallographie 5, 68–105 (1931)Google Scholar
  31. 31.
    Litke, N., Levin, A., Schröder, P.: Fitting subdivision surfaces (2001), http://www.multires.caltech.edu/pubs (acessed January 2011)
  32. 32.
    Loop, C.: Smooth subdivision surfaces based on triangles. Master’s thesis, University of Utah, Department of Mathematics (1987)Google Scholar
  33. 33.
    Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics. Morgan Kaufmann (2003)Google Scholar
  34. 34.
    Ma, W.: Subdivision surfaces for CAD - an overview. Computer-Aided Design 37, 693–709 (2005)CrossRefGoogle Scholar
  35. 35.
    Márquez, A., Moreno-González, A., Plaza, A., Suárez, J.P.: The seven-triangle longest-side partition of triangles and mesh quality improvement. Finite Elements in Analysis and Design 44, 748–758 (2008)CrossRefGoogle Scholar
  36. 36.
    Padrón, M.A., Suárez, J.P., Plaza, A.: Refinement based on longest-edge and self-similar four-triangle partitions. Math. and Comp. in Sim. 75, 251–262 (2007)zbMATHCrossRefGoogle Scholar
  37. 37.
    Pakdel, H., Samavati, F.: Incremental subdivision for triangle meshes. International Journal of Computational Science and Engineering 3(1), 80–92 (2007)Google Scholar
  38. 38.
    Plaza, A., Márquez, A., Moreno-González, A., Suárez, J.P.: Local refinement based on the 7-triangle longest-edge partition. Mathematics and Computers in Simulation 79, 2444–2457 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Plaza, A., Montenegro, R., Ferragut, L.: An improved derefinement algorithm of nested meshes. Advances in Engineering Software 27, 51–57 (1996)CrossRefGoogle Scholar
  40. 40.
    Plaza, A., Rivara, M.C.: On the adjacencies of triangular meshes based on skeleton-regular partitions. J. of Comp. and Applied Math. 140, 673–693 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Powell, M.J.D., Sabin, M.A.: Piecewise quadratic approximations on triangles. ACM Transactions on Mathematical Software 3(4), 316–325 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Puppo, E.: Variable resolution triangulations. Comp. Geometry 11, 219–238 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Puppo, E.: Selectively refinable subdivision meshes. In: Polthier, K., Sheffer, A. (eds.) Eurographics Symposium on Geometry Processing, pp. 153–162 (2006)Google Scholar
  44. 44.
    Puppo, E., Panozzo, D.: RGB subdivision. IEEE Transactions on Visualization and Computer Graphics, 1–14 (2008)Google Scholar
  45. 45.
    Puppo, E., Panozzo, D.: RGB subdivision. IEEE Transactions on Visualization and Computer Graphics 15(2), 295–310 (2009)CrossRefGoogle Scholar
  46. 46.
    Puppo, E., Scopigno, R.: Simplification, LOD and multiresolution principles and applications. In: EUROGRAPHICS 1997 Conference Proc., vol. 16(3). Blackwell (1997)Google Scholar
  47. 47.
    Rivara, M.C.: Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. Int. J. for Numerical Methods in Eng. 20, 745–756 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Rivara, M.C.: Selective refinement/derefinement algorithms for sequences of nested triangulations. International Journal for Numerical Methods in Engineering 28, 2889–2906 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Rivara, M.C.: New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations. International Journal for Numerical Methods in Engineering 40, 3313–3324 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Rivara, M.C., Inostroza, P.: Using longest-side bisection techniques for the automatic refinement of delaunay triangulations. International Journal for Numerical Methods in Engineering 40, 581–597 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Rivara, M.C., Iribarren, G.: The 4-triangles longest-side partition of triangles and linear refinement algorithms. Mathematics of Computation 65(126), 1485–1502 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Rivara, M.C., Venere, M.: Cost analysis of the longest-side (triangle biection) refinement algorithms for triangulations. Eng. with Computers 12, 224–234 (1996)CrossRefGoogle Scholar
  53. 53.
    Rosenberg, I.G., Stenger, F.: A lower bound on the angles of triangles constructed by bisecting the longest side. Math. of Computation 29, 390–395 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Sabin, M.: Recent Progress in Subdivision: A Survey. In: Dodgson, N.A., Floater, M., Sabin, M. (eds.) Advances in Multiresolution for Geometric Modelling, pp. 203–230. Springer, Heidelberg (2004)Google Scholar
  55. 55.
    Scarlatos, L., Pavlidis, T.: Hierarchical triangulation using cartographic coherence. CVGIP: Graphical Models and Image Proc. 54(2), 147–161 (1992)CrossRefGoogle Scholar
  56. 56.
    Stamm, C., Eidenbenz, S., Pajarola, R.: A modified longest side bisection triangulation. In: Proceedings of the 10th Canadian Conference on Computational Geometry 1998, pp. 1–6 (1998)Google Scholar
  57. 57.
    Stynes, M.: On faster convergence of the bisection method for all triangles. Mathematics of Computation 35(152), 1195–1201 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Thacker, W.C.: A brief review of techniques for generating irregular computational grids. International Journal for Numerical Methods in Engineering 15, 1335–1341 (1980)zbMATHCrossRefGoogle Scholar
  59. 59.
    Velho, L.: Stellar subdivision grammars. In: Kobbelt, L., Schröder, P., Hoppe, H. (eds.) Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. ACM International Conference Proceeding Series, vol. 43, pp. 188–199 (2003)Google Scholar
  60. 60.
    Velho, L., Zorin, D.: 4-8 subdivision. Comp. Aided Geom. Des. 18, 397–427 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Warren, J., Weimer, H.: Subdivision Methods for Geometric Design. Morgan Kaufmann (2002)Google Scholar
  62. 62.
    Zorin, D., Schröder, P., De Rose, T., Kobbelt, L., Levin, A., Sweldens, W.: Subdivision for Modeling and Animation, SIGGRAPH 2000 Course Notes. Organizers: Zorin, D., Schröder, P. (2000)Google Scholar
  63. 63.
    Zorin, D., Schröder, P., Sweldens, W.: Interactive multiresolution mesh editing. In: Proceedings of ACM SIGGRAPH 1997, pp. 259–268 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sanderson L. Gonzaga de Oliveira
    • 1
  1. 1.Universidade Federal de LavrasLavrasBrazil

Personalised recommendations