Adapting to Climate Change in a High Mountain Environment: Developing a Monitoring Expert System for Hazardous Rock Walls

  • Ingo HartmeyerEmail author
  • Markus Keuschnig
  • Jan-Christoph Otto
  • Lothar Schrott
Part of the Climate Change Management book series (CCM)


The research project MOREXPERT (“Monitoring Expert System for Hazardous Rock Walls”) investigates short and medium term responses of slope stability to climatic changes in high alpine rock walls. The study contributes to the question how man and infrastructure are potentially affected by these responses. Based on a combination of geophysical, geotechnical and borehole measurements, surface and subsurface conditions are monitored within the study area at the Kitzsteinhorn (3.203 m), Hohe Tauern, Austria. Factors controlling slope stability in steep bedrock, most notably freeze/thaw and permafrost dynamics, are identified and analysed with respect to changing climatic conditions. The fundamental goal of this research project is the development of a general decision support system for slope stability assessment in steep bedrock. Due to its flexible structure the decision support system is intended to be adaptable for application to rock walls of other regions.


Permafrost Rockfall Slope stability Rock mechanics Monitoring Climate change adaptation Natural hazards 



MOREXPERT is supported by numerous companies and scientific partners. The authors want to particularly thank Gletscherbahnen Kaprun AG, Geoconsult ZT GmbH, Geodata GmbH, Geolog 2000 Fuss/Hepp GdbR, the University of Salzburg, the University of Bonn, the University of Graz, the Z_GIS Centre for Geoinformatics and Salzburg Research GmbH.


  1. Allen S, Gruber S, Owens F (2009) Exploring steep bedrock permafrost and its relationship with recent slope failures in the southern Alps of New Zealand. Permafrost Periglac Process 20:345–356CrossRefGoogle Scholar
  2. Bommer C, Phillips M, Keusen H-R, Teysseire P (2009) Bauen im Permafrost: Ein Leitfaden für die Praxis. Birmensdorf Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL, p 126Google Scholar
  3. Davies MCR, Hamza O, Lumsden BW, Harris C (2000) Laboratory measurements of the shear strength of ice-filled rock joints. Ann Glaciol 31:463–467CrossRefGoogle Scholar
  4. Gruber S, Hoelzle M, Haeberli W (2004) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophys Res Lett 31:L13504. doi: 10.1029/2004GL020051 CrossRefGoogle Scholar
  5. Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature‐related destabilization following climate change. J Geophys Res 112:F02S13. doi: 10.1029/2006JF000547
  6. Haeberli W, Noetzli J, Arenson L, Delaloye R, Gärtner-Roer I, Gruber S, Isaksen K, Kneisel C, Krautblatter M, Phillips M (2010) Mountain permafrost: development and challenges of a young research field. J Glaciol 56:1043–1058CrossRefGoogle Scholar
  7. Hauck C, Kneisel C (2008) Applied geophysics in periglacial environments. Cambridge University Press, LondonCrossRefGoogle Scholar
  8. Harris C, Davies M, Etzelmüller B (2001a) The assessment of potential geotechnical hazards associated with mountain permafrost in a warming global climate. Permafrost Periglac Process 12:145–156CrossRefGoogle Scholar
  9. Harris C, Haeberli W, Vonder Mühll D, King L (2001b) Permafrost monitoring in the high mountains of Europe: the PACE Project in its global context. Permafrost Periglac Process 12:3–11CrossRefGoogle Scholar
  10. Krautblatter M, Verleysdonk S, Flores-Orozco A, Kemna A (2010) Temperature-calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps). J Geophys Res 115:F02003. doi: 10.1029/2008JF001209 CrossRefGoogle Scholar
  11. Kenner R, Phillips M, Danioth C, Denier C, Thee P, Zgraggen A (2011) Investigation of rock and ice loss in a recently deglaciated mountain rock wall using terrestrial laser scanning: Gemsstock, Swiss Alps. Cold Reg Sci Technol 67:157–164CrossRefGoogle Scholar
  12. Mellor M. (1973) Mechanical properties of rocks at low temperatures. Paper presented at the 2nd international conference on Permafrost, International Permafrost Association, Yakutsk, RussiaGoogle Scholar
  13. Otto JC, Ebohon B, Keuschnig M, Schrott L (2010) Das Phänomen Permafrost in Österreich—meist unsichtbar, aber nicht unbedeutend. BFW-Praxisinf 23:11–13Google Scholar
  14. PermaNET (2011) Permafrost long-term monitoring network—Synthesis reportGoogle Scholar
  15. PERMOS (2010) Permafrost in Switzerland 2006/2007 and 2007/2008. In: Noetzli J, Vonder Muehll D (eds) Glaciological Report (Permafrost), No. 8/9 of the Cryospheric, Commission of the Swiss academy of sciences, p 68Google Scholar
  16. Ravanel L, Deline P (2010) Climate influence on rockfalls in high-Alpine steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the ‘Little Ice Age’. Holocene 21(2):357–365CrossRefGoogle Scholar
  17. Ravanel L, Deline P, Magnin F, Malet E, Noetzli J (2011) The first year of borehole measurements in the rock permafrost at Aiguille du Midi (3842 m a.s.l., Mont Blanc massif). Geophys Res Abstr 13:EGU2011-8433-1Google Scholar
  18. Tollner H (1951) Über Schwankungen von Mächtigkeit und Dichte ostalpiner Firnfelder. Theoret Appl Climatol 3:189–208Google Scholar
  19. Vonder Muehll D, Stucki T, Haeberli W (1998) Borehole temperatures in Alpine permafrost: a ten year series. Proceedings of the seventh international conference on Permafrost, Yellowknife, Canada, pp 1089–1095Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ingo Hartmeyer
    • 1
    Email author
  • Markus Keuschnig
    • 1
  • Jan-Christoph Otto
    • 1
  • Lothar Schrott
    • 1
  1. 1.alpS Centre for Climate Change Adaptation TechnologiesInnsbruckAustria

Personalised recommendations