Skip to main content

Nanosized Gold and Silver Spherical, Spiky, and Multi-branched Particles

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

Metal nanoparticles (NPs) have recognized a growing importance in chemistry, electronics, optics, physics, and biology in the last decades. The possibility of tuning their unique properties varying dimension and morphology widely extends the range of possible applications. Several innovative chemical routes have been investigated to design shape-controlled synthesis to combine high-yield production with controllable and repeatable morphology. This chapter will focus on gold and silver NPs because of the easiness in synthesis control and of the large implementation in research and industrial applications. Synthesis methods, different morphologies and properties, and some of the possible applications will be discussed and reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng XK, Tang SC, Vongehr S (2010) A review on diverse silver nanostructures. J Mater Sci Technol 26:487–522

    Google Scholar 

  2. Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem A Eur J 11:454–463

    Google Scholar 

  3. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Google Scholar 

  4. Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094

    Google Scholar 

  5. Xiao J, Qi L (2011) Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale 3:1383–1396

    Google Scholar 

  6. Shen XS, Wang GZ, Hong X, Zhu W (2009) Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates. Phys Chem Chem Phys 11:7450–7454

    Google Scholar 

  7. Qin Y, Song Y, Sun N, Zhao N, Li M, Qi L (2008) Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry. Chem Mater 20:3965–3972

    Google Scholar 

  8. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics – a route to nanoscale optical devices. Adv Mater 13:1501–1505

    Google Scholar 

  9. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Google Scholar 

  10. Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825

    Google Scholar 

  11. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Engl 48:60–103

    Google Scholar 

  12. Liao H-G, Jiang Y-X, Zhou Z-Y, Chen S-P, Sun S-G (2008) Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angew Chem Int Ed Engl 47:9100–9103

    Google Scholar 

  13. Barbosa S, Agrawal A, Rodríguez-Lorenzo L, Pastoriza-Santos I, Alvarez-Puebla RA, Kornowski A, Weller H, Liz-Marzán LM (2010) Tuning size and sensing properties in colloidal gold nanostars. Langmuir 26:14943–14950

    Google Scholar 

  14. Tan SJ, Campolongo MJ, Luo D, Cheng W (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276

    Google Scholar 

  15. Hong L, Li Q, Lin H, Li Y (2009) Synthesis of flower-like silver nanoarchitectures at room temperature. Mater Res Bull 44:1201–1204

    Google Scholar 

  16. Xionghui C, Aixia Z (2010) Preparation of microsized silver crystals with different morphologies by a wet-chemical method. Rare Metals 29:407–412

    Google Scholar 

  17. Wang H, Halas NJ (2008) Mesoscopic au “meatball” particles. Adv Mater 20:820–825

    Google Scholar 

  18. Burt J, Elechiguerra J, Reyesgasga J, Martinmontejanocarrizales J, Joseyacaman M (2005) Beyond Archimedean solids: star polyhedral gold nanocrystals. J Cryst Growth 285:681–691

    Google Scholar 

  19. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649

    Google Scholar 

  20. Zhao N, Wei Y, Sun N, Chen Q, Bai J, Zhou L, Qin Y, Li M, Qi L (2008) Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir 24:991–998

    Google Scholar 

  21. Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44:914–924

    Google Scholar 

  22. Cauda V, Schlossbauer A, Kecht J, Zuerner A, Bein T (2009) Multiple core-shell functionalized colloidal mesoporous silica nanoparticles. J Am Chem Soc 131:11361–11370

    Google Scholar 

  23. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Google Scholar 

  24. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Google Scholar 

  25. Jeong GH, Lee YW, Kim M, Han SW (2009) High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Raman scattering properties. J Colloid Interface Sci 329:97–102

    Google Scholar 

  26. Auer S, Frenkel D (2001) Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409:1020

    Google Scholar 

  27. Matijevic E (1996) Controlled colloid formation. Curr Opin Colloid Interface Sci 1:176–183

    Google Scholar 

  28. Schon G, Simon U (1995) A fascinating new field in colloid science: small ligand stabilized metall clusters and possible applications in microelectronics. Colloid Polym Sci 273:101–117

    Google Scholar 

  29. Weller H (1993) Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules. Angew Chem Int Ed 32:41–53

    Google Scholar 

  30. Murray CB, Kagan CR, Bawendi MG (1995) Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270:1335–1338

    Google Scholar 

  31. Kuo C-H, Huang MH (2005) Synthesis of branched gold nanocrystals by a seeding growth approach. Langmuir 21:2012–2016

    Google Scholar 

  32. Brust M, Bethell D, Schiffrin DJ, Kiely CJ (1995) Novel gold-dithiol nano-networks with non-metallic electronic properties. Adv Mater 7:795–797

    Google Scholar 

  33. Hostetler MJ, Green SJ, Stokes JJ, Murray RW (1996) Monolayers in three dimensions: synthesis and electrochemistry of ω-functionalized alkanethiolate-stabilized gold cluster compounds. J Am Chem Soc 118:4212–4213

    Google Scholar 

  34. Leff DV, Ohara PC, Heath JR, Gelbart WM (1995) Thermodynamic control of gold nanocrystal size: experiment and theory. J Phys Chem 99:7036–7041

    Google Scholar 

  35. Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW, Royce W (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14:17–30

    Google Scholar 

  36. Tao AR, Habas S, Yang PD (2008) Shape control of colloidal metal nanocrystals. Small 4:310

    Google Scholar 

  37. Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3:955

    Google Scholar 

  38. Xiong Y, Xia Y (2007) Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv Mater 19:3385

    Google Scholar 

  39. Wiley BJ, Chen Y, McLellan J, Xiong Y, Li Z-Y, Ginger D, Xia Y (2007) Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7:1032

    Google Scholar 

  40. Washio I, Xiong Y, Yin Y, Xia Y (2006) Reduction by the end groups of Poly(vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv Mater 18:1745

    Google Scholar 

  41. Xiong Y, Washio I, Chen J, Cai H, Li Z-Y, Xia Y (2006) Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 22:8563

    Google Scholar 

  42. Morrison HG (2009) Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int J Pharm 378:1–2

    Google Scholar 

  43. Parnham ER, Drylie EA, Wheatley PS, Slawin AMZ, Morris RE (2006) Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. Angew Chem Int Ed Engl 45:4962–4966

    Google Scholar 

  44. Chambers SA (1991) Epitaxial film crystallography by high-energy Auger and X-ray photoelectron diffraction. Adv Phys 40:357

    Google Scholar 

  45. Ledentsov NN, Ustinov VM, Shchulan VA, Koper PS, Alferov ZI, Bimbers D (1998) Quantum dot heterostructures: growth, properties, lasing. Semiconductors 32:343

    Google Scholar 

  46. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065

    Google Scholar 

  47. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold Nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957

    Google Scholar 

  48. Barbieri A, Accorsi G, Armaroli N (2008) Luminescent complexes beyond the platinum group: the d10 avenue. Chem Commun 19:2185–2193

    Google Scholar 

  49. Hada H, Yonezawa Y, Yoshida A, Kurakake A (1976) Photoreduction of silver ion in aqueous and alcoholic solutions. J Phys Chem 80:2728–2731

    Google Scholar 

  50. Sato T, Onaka H, Yonezawa Y (1999) Sensitized photoreduction of silver ions in the presence of acetophenone. J Photochem Photobiol A Chem 127:83–87

    Google Scholar 

  51. Itakura T, Torigoe K, Esumi K (1995) Preparation and characterization of ultrafine metal particles in ethanol by UV irradiation using a photoinitiator. Langmuir 11:4129–4134

    Google Scholar 

  52. Esumi K, Matsumoto T, Seto Y, Yoshimura T (2005) Preparation of gold-, gold/silver-dendrimer nanocomposites in the presence of benzoin in ethanol by UV irradiation. J Colloid Interface Sci 284:199–203

    Google Scholar 

  53. Scaiano JC, Aliaga C, Maguire S, Wang D (2006) Magnetic field control of photoinduced silver nanoparticle formation. J Phys Chem B 110:12856–12859

    Google Scholar 

  54. Scaiano JC, Billone P, Gonzalez CM, Maretti L, Marin ML, McGilvray KL, Yuan N (2009) Photochemical routes to silver and gold nanoparticles. Pure Appl Chem 81:635–647

    Google Scholar 

  55. Courrol LC, de Oliveira Silva FR, Gomes L (2007) A simple method to synthesize silver nanoparticles by photo-reduction. Colloids Surf A Physicochem Eng Asp 305:54–57

    Google Scholar 

  56. Yang S, Wang Y, Wang Q, Zhang R, Ding B (2007) UV irradiation induced formation of Au nanoparticles at room temperature: the case of pH values. Colloids Surf A Physicochem Eng Asp 301:174–183

    Google Scholar 

  57. Han MY, Quek CH (2000) Photochemical synthesis in formamide and room-temperature Coulomb staircase behavior of size-controlled gold nanoparticles. Langmuir 16:362–367

    Google Scholar 

  58. Esumi K, Wakabayashi M, Torigoe K (1996) Preparation of colloidal silver-palladium alloys by UV-irradiation in mixtures of acetone and 2-propanol. Colloids Surf A Physicochem Eng Asp 109:55–62

    Google Scholar 

  59. Hada H, Yonezawa Y, Saikawa M (1982) Photoreduction of silver in a titanium dioxide suspension. Bull Chem Soc Jpn 55:2010–2014

    Google Scholar 

  60. Yonezawa Y, Kometani N, Sakaue T, Yano A (2005) Photoreduction of silver ions in a colloidal titanium dioxide suspension. J Photochem Photobiol A Chem 171:1–8

    Google Scholar 

  61. Zhang H, Wang G, Chen D, Lv X, Li J (2008) Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag. Chem Mater 20:6543–6549

    Google Scholar 

  62. Hada H, Tanemura H, Yonezawa Y (1978) Photoreduction of the silver ion in a zinc oxide suspension. Bull Chem Soc Jpn 51:3154–3160

    Google Scholar 

  63. Carbone L, Jakab A, Khalavka Y, Sönnichsen C (2009) Light-controlled one-sided growth of large plasmonic gold domains on quantum rods observed on the single particle level. Nano Lett 9:3710–3714

    Google Scholar 

  64. Dong SA, Zhou SP (2007) Photochemical synthesis of colloidal gold nanoparticles. Mater Sci Eng B Solid-State Mater Adv Technol 140:153–159

    Google Scholar 

  65. Jia H, Xu W, An J, Li D, Zhao B (2006) A simple method to synthesize triangular silver nanoparticles by light irradiation. Spectrochim Acta A Mol Biomol Spectrosc 64:956–960

    Google Scholar 

  66. Maillard M, Huang P, Brus L (2003) Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag +]. Nano Lett 3:1611–1615

    Google Scholar 

  67. Taubert A, Arbell I, Mecke A, Graf P (2006) Photoreduction of a crystalline Au(III) complex: a solid-state approach to metallic nanostructures. Gold Bull 39:205–211

    Google Scholar 

  68. Tung HT, Song JM, Nien YT, Chen IG (2008) A novel method for preparing vertically grown single-crystalline gold nanowires. Nanotechnology 19:455603

    Google Scholar 

  69. Glover RD, Miller JM, Hutchison JE (2011) Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 5:8950–8957

    Google Scholar 

  70. Goldstein J, Newbury D, Joy D, Lyman C, Echlin P, Lifshin E, Sawyer LC, Michael JR (2002) Scanning electron microscopy and X-ray microanalysis. Springer, New York

    Google Scholar 

  71. Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for materials science. Springer, New York

    Google Scholar 

  72. Stassi S, Cauda V, Canavese G, Manfredi D, Pirri CF (2012) Synthesis and characterization of gold nanostars as filler of tunneling conductive polymer composites. Eur J Inorg Chem 16:2669–2673

    Google Scholar 

  73. Mulvihill MJ, Ling XY, Henzie J, Yang P (2010) Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J Am Chem Soc 132:268–274

    Google Scholar 

  74. Lim B, Xia Y (2011) Metal nanocrystals with highly branched morphologies. Angew Chem Int Ed Engl 50:76–85

    Google Scholar 

  75. Senthil Kumar P, Pastoriza-Santos I, Rodríguez-González B, Javier García de Abajo F, Liz-Marzán LM (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnology 19:015606

    Google Scholar 

  76. Khoury CG, Vo-Dinh T (2008) Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J Phys Chem C 112:18849–18859

    Google Scholar 

  77. Nalbant Esenturk E, Hight Walker AR (2009) Surface-enhanced Raman scattering spectroscopy via gold nanostars. J Raman Spectrosc 40:86–91

    Google Scholar 

  78. Stassi S, Canavese G, Cauda V, Marasso SL, Pirri CF (2012) Evaluation of different conductive nanostructured particles as filler in smart piezoresistive composites. Nanoscale Res Lett 7:327

    Google Scholar 

  79. Xu X, Jia J, Yang X, Dong S (2010) A templateless, surfactantless, simple electrochemical route to a dendritic gold nanostructure and its application to oxygen reduction. Langmuir 26:7627–7631

    Google Scholar 

  80. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Google Scholar 

  81. Xia Y, Halas NJ (2005) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30:338–348

    Google Scholar 

  82. Haynes CL, McFarland AD, Van Duyne RP (2005) Surface-enhanced: Raman spectroscopy. Anal Chem 77:338 A–346 A

    Google Scholar 

  83. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20

    Google Scholar 

  84. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Google Scholar 

  85. Virga A, Rivolo P, Descrovi E, Chiolerio A, Digregorio G, Frascella F, Soster M, Bussolino F, Marchiò S, Geobaldo F, Giorgis F (2012) SERS active Ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide-antibody assays. J Raman Spectrosc 43:730–736

    Google Scholar 

  86. Chiolerio A, Virga A, Pandolfi P, Martino P, Rivolo P, Geobaldo F, Giorgis F (2012) Direct patterning of silver particles on porous silicon by inkjet printing of a silver salt via in-situ reduction. Nanoscale Res Lett 7:502

    Google Scholar 

  87. Huang T, Meng F, Qi L (2010) Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin. Langmuir 26:7582–7589

    Google Scholar 

  88. Sureshkumar M, Siswanto DY, Lee CK (2010) Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J Mater Chem 20:6948–6955

    Google Scholar 

  89. Shah MSAS, Nag M, Kalagara T, Singh S, Manorama SV (2008) Silver on PEG-PU-TiO2 polymer nanocomposite films: an excellent system for antibacterial applications. Chem Mater 20:2455–2460

    Google Scholar 

  90. Hsu SH, Tseng HJ, Lin YC (2010) The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 31:6796–6808

    Google Scholar 

  91. Varaprasad K, Murali Mohan Y, Ravindra S, Narayana Reddy N, Vimala K, Monika K, Sreedhar B, Mohana Raju K (2010) Hydrogel-silver nanoparticle composites: a new generation of antimicrobials. J Appl Polym Sci 115:1199–1207

    Google Scholar 

  92. Bryaskova R, Pencheva D, Kale GM, Lad U, Kantardjiev T (2010) Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films. J Colloid Interface Sci 349:77–85

    Google Scholar 

  93. Dastjerdi R, Montazer M, Shahsavan S (2010) A novel technique for producing durable multifunctional textiles using nanocomposite coating. Colloids Surf B Biointerfaces 81:32–41

    Google Scholar 

  94. Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci 166:119–135

    Google Scholar 

  95. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5–18

    Google Scholar 

  96. Goyal AK, Johal ES, Rath G (2011) Nanotechnology for water treatment. Curr Nanosci 7:640–654

    Google Scholar 

  97. Gasparyan VK (2009) Gold and silver nanoparticles in bioassay, cell visualization and therapy. Curr Clin Pharmacol 4:159–163

    Google Scholar 

  98. Leung KCF, Xuan S, Zhu X, Wang D, Chak CP, Lee SF, Ho WKW, Chung BCT (2012) Gold and iron oxide hybrid nanocomposite materials. Chem Soc Rev 41:1911–1928

    Google Scholar 

  99. Rahman M, Ahmad MZ, Kazmi I, Akhter S, Afzal M, Gupta G, Jalees Ahmed F, Anwar F (2012) Advancement in multifunctional nanoparticles for the effective treatment of cancer. Expert Opin Drug Deliv 9:367–381

    Google Scholar 

  100. Wang LS, Chuang MC, Ho JA (2012) Nanotheranostics – a review of recent publications. Int J Nanomedicine 7:4679–4695

    Google Scholar 

  101. Li D, He Q, Li J (2009) Smart core/shell nanocomposites: intelligent polymers modified gold nanoparticles. Adv Colloid Interface Sci 149:28–38

    Google Scholar 

  102. Tang YH, Huang AYT, Chen PY, Chen HT, Kao CL (2011) Metallodendrimers and dendrimer nanocomposites. Curr Pharm Des 17:2308–2330

    Google Scholar 

  103. Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2012) Advances in polymeric systems for tissue engineering and biomedical applications. Macromol Biosci 12:286–311

    Google Scholar 

  104. Huang H, Yuan Q, Yang X (2005) Morphology study of gold-chitosan nanocomposites. J Colloid Interface Sci 282:26–31

    Google Scholar 

  105. Madhumathi K, Sudheesh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 21:807–813

    Google Scholar 

  106. Tang F, He F, Cheng H, Li L (2010) Self-assembly of conjugated polymer-Ag@SiO2 hybrid fluorescent nanoparticles for application to cellular imaging. Langmuir 26:11774–11778

    Google Scholar 

  107. Zhao J, Castranova V (2011) Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Health B Crit Rev 14:593–632

    Google Scholar 

  108. Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006

    Google Scholar 

  109. Rybak A, Boiteux G, Melis F, Seytre G (2010) Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices. Compos Sci Technol 70:410–416

    Google Scholar 

  110. Kim WT, Jung JH, Kim TW, Son DI (2010) Current bistability and carrier transport mechanisms of organic bistable devices based on hybrid Ag nanoparticle-polymethyl methacrylate polymer nanocomposites. Appl Phys Lett 96:253301

    Google Scholar 

  111. Mahendia S, Tomar AK, Kumar S (2010) Electrical conductivity and dielectric spectroscopic studies of PVA-Ag nanocomposite films. J Alloys Compd 508:406–411

    Google Scholar 

  112. Gautam A, Ram S (2010) Preparation and thermomechanical properties of Ag-PVA nanocomposite films. Mater Chem Phys 119:266–271

    Google Scholar 

  113. Zhang R, Moon KS, Lin W, Wong CP (2010) Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles. J Mater Chem 20:2018–2023

    Google Scholar 

  114. Chun KY, Oh Y, Rho J, Ahn JH, Kim YJ, Choi HR, Baik S (2010) Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotechnol 5:853–857

    Google Scholar 

  115. Pudas M, Hagberg J, Leppävuori S (2004) Gravure offset printing of polymer inks for conductors. Prog Org Coat 49:324–335

    Google Scholar 

  116. Zhu R, Chung CH, Cha KC, Yang W, Zheng YB, Zhou H, Song TB, Chen CC, Weiss PS, Li G, Yang Y (2011) Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 5:9877–9882

    Google Scholar 

  117. Gaynor W, Burkhard GF, McGehee MD, Peumans P (2011) Smooth nanowire/polymer composite transparent electrodes. Adv Mater 23:2905–2910

    Google Scholar 

  118. Kim BY, Shim IB, Araci ZO, Scott Saavedra S, Monti OLA, Armstrong NR, Sahoo R, Srivastava DN, Pyun J (2010) Synthesis and colloidal polymerization of ferromagnetic Au-Co nanoparticles into Au-Co3O4 nanowires. J Am Chem Soc 132:3234–3235

    Google Scholar 

  119. Englebienne P, Van Hoonacker A (2005) Gold-conductive polymer nanoparticles: a hybrid material with enhanced photonic reactivity to environmental stimuli. J Colloid Interface Sci 292:445–454

    Google Scholar 

  120. Joshi L, Prakash R (2011) One-pot synthesis of polyindole-Au nanocomposite and its nanoscale electrical properties. Mater Lett 65:3016–3019

    Google Scholar 

  121. Nambiar S, Yeow JTW (2011) Conductive polymer-based sensors for biomedical applications. Biosens Bioelectron 26:1825–1832

    Google Scholar 

  122. Kotov N (2004) Membrane sensors: nanocomposites are streteched thin. Nat Mater 3:669–671

    Google Scholar 

  123. Hanisch C, Ni N, Kulkarni A, Zaporojtchenko V, Strunskus T, Faupel F (2011) Fast electrical response to volatile organic compounds of 2D Au nanoparticle layers embedded into polymers. J Mater Sci 46:438–445

    Google Scholar 

  124. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25:1070–1074

    Google Scholar 

  125. Devadoss A, Spehar-Délèze AM, Tanner DA, Bertoncello P, Marthi R, Keyes TE, Forster RJ (2010) Enhanced electrochemiluminescence and charge transport through films of metallopolymer-gold nanoparticle composites. Langmuir 26:2130–2135

    Google Scholar 

  126. Jiang G, Hore MJA, Gam S, Composto RJ (2012) Gold nanorods dispersed in homopolymer films: optical properties controlled by self-assembly and percolation of nanorods. ACS Nano 6:1578–1588

    Google Scholar 

  127. Beyene HT, Chakravadhanula VSK, Hanisch C, Elbahri M, Strunskus T, Zaporojtchenko V, Kienle L, Faupel F (2010) Preparation and plasmonic properties of polymer-based composites containing Ag-Au alloy nanoparticles produced by vapor phase co-deposition. J Mater Sci 45:5865–5871

    Google Scholar 

  128. Hu X, Li Z, Zhang J, Yang H, Gong Q, Zhang X (2011) Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities. Adv Funct Mater 21:1803–1809

    Google Scholar 

  129. Nguyen TP (2011) Polymer-based nanocomposites for organic optoelectronic devices. A review. Surf Coat Technol 206:742–752

    Google Scholar 

  130. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

    Google Scholar 

  131. Orozco VH, Kozlovskaya V, Kharlampieva E, López BL, Tsukruk VV (2010) Biodegradable self-reporting nanocomposite films of poly(lactic acid) nanoparticles engineered by layer-by-layer assembly. Polymer 51:4127–4139

    Google Scholar 

  132. Zhu Z, Senses E, Akcora P, Sukhishvili SA (2012) Programmable light-controlled shape changes in layered polymer nanocomposites. ACS Nano 6:3152–3162

    Google Scholar 

  133. Andres CM, Kotov NA (2010) Inkjet deposition of layer-by-layer assembled films. J Am Chem Soc 132:14496–14502

    Google Scholar 

  134. Chrissafis K, Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta 523:1–24

    Google Scholar 

  135. Yuan C, Luo W, Zhong L, Deng H, Liu J, Xu Y, Dai L (2011) Gold@Polymer nanostructures with tunable permeability shells for selective catalysis. Angew Chem Int Ed 50:3515–3519

    Google Scholar 

  136. Sangermano M, Perruchas S, Gacoin T, Rizza G (2008) Synthesis of Au@SiO2 core/shell nanoparticles and their dispersion into an acrylic photocurable formulation: film preparation and characterization. Macromol Chem Phys 209:2343–2348

    Google Scholar 

  137. Sangermano M, Marchino A, Perruchas S, Gacoin T, Rizza G (2008) UV-cured nanostructured gold/acrylic coating. Macromol Mater Eng 293:964–968

    Google Scholar 

  138. Maity S, Bochinski JR, Clarke LI (2012) Metal nanoparticles acting as light-activated heating elements within composite materials. Adv Funct Mater 22:5259–5270

    Google Scholar 

  139. Chiolerio A, Sangermano M (2012) In situ synthesis of Ag-acrylic nanocomposites: tomography-based percolation model, irreversible photoinduced electromigration and reversible electromigration. Mater Sci Eng B Solid-State Mater Adv Technol 177:373–380

    Google Scholar 

  140. Sangermano M, Roppolo I, Camara VHA, Dizman C, Ates S, Torun L, Yagci Y (2011) Polysulfone/metal nanocomposites by simultaneous photoinduced crosslinking and redox reaction. Macromol Mater Eng 296:820–825

    Google Scholar 

  141. Chiolerio A, Vescovo L, Sangermano M (2010) Conductive UV-cured acrylic inks for resistor fabrication: models for their electrical properties. Macromol Chem Phys 211:2008–2016

    Google Scholar 

  142. Sangermano M, Yagci Y, Rizza G (2007) In situ synthesis of silver-epoxy nanocomposites by photoinduced electron transfer and cationic polymerization processes. Macromolecules 40:8827–8829

    Google Scholar 

  143. Vescovo L, Sangermano M, Scarazzini R, Kortaberria G, Mondragon I (2010) In-situ-synthetized silver/epoxy nanocomposites: electrical characterization by means of dielectric spectroscopy. Macromol Chem Phys 211:1933–1939

    Google Scholar 

  144. Colucci G, Celasco E, Mollea C, Bosco F, Conzatti L, Sangermano M (2011) Hybrid coatings containing silver nanoparticles generated in situ in a thiol-ene photocurable system. Macromol Mater Eng 296:921–928

    Google Scholar 

  145. Cook WD, Nghiem QD, Chen Q, Chen F, Sangermano M (2011) Simultaneous photoinduced silver nanoparticles formation and cationic polymerization of divinyl ethers. Macromolecules 44:4065–4071

    Google Scholar 

  146. Chiolerio A, Roppolo I, Sangermano M (2013) Radical diffusion engineering: tailored nanocomposite materials for piezoresistive inkjet printed strain measurement. RSC Adv 3:3446–3452

    Google Scholar 

  147. Nair JR, Ijeri VS, Gerbaldi C, Bodoardo S, Bongiovanni R, Penazzi N (2010) Novel self-directed dual surface metallisation via UV-curing technique for flexible polymeric capacitors. Org Electron Phys Mater Appl 11:1802–1808

    Google Scholar 

  148. Yagci Y, Sangermano M, Rizza G (2008) Synthesis and characterization of gold – epoxy nanocomposites by visible light photoinduced electron transfer and cationic polymerization processes. Macromolecules 41:7268–7270

    Google Scholar 

  149. Smirnova TN, Kokhtych LM, Kutsenko AS, Sakhno OV, Stumpe J (2009) The fabrication of periodic polymer/silver nanoparticle structures: In situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure. Nanotechnology 20:405301

    Google Scholar 

  150. Trandafilović LV, Luyt AS, Bibić N, Dimitrijević-Branković S, Georges MK, Radhakrishnan T, Djoković V (2012) Formation of nano-plate silver particles in the presence of polyampholyte copolymer. Colloids Surf A Physicochem Eng Asp 414:17–25

    Google Scholar 

  151. Jeon SH, Xu P, Zhang B, MacK NH, Tsai H, Chiang LY, Wang HL (2011) Polymer-assisted preparation of metal nanoparticles with controlled size and morphology. J Mater Chem 21:2550–2554

    Google Scholar 

  152. Kim JU, Cha SH, Shin K, Jho JY, Lee JC (2004) Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions. Adv Mater 16:459–464

    Google Scholar 

  153. Hu S, Brittain WJ, Jacobson S, Balazs AC (2006) Selective ordering of surfactant modified gold nanoparticles in a diblock copolymer. Eur Polym J 42:2045–2052

    Google Scholar 

  154. Mallick K, Witcomb M, Scurrell M (2007) A novel synthesis route for a gold-polymer soft composite material. Phys Status Solid Rapid Res Lett 1:R1–R3

    Google Scholar 

  155. Scott A, Gupta R, Kulkarni GU (2010) A simple water-based synthesis of Au Nanoparticle/PDMS composites for water purification and targeted drug release. Macromol Chem Phys 211:1640–1647

    Google Scholar 

  156. Goyal A, Kumar A, Patra PK, Mahendra S, Tabatabaei S, Alvarez PJJ, John G, Ajayan PM (2009) In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films. Macromol Rapid Commun 30:1116–1122

    Google Scholar 

  157. Kalyva M, Kumar S, Brescia R, Petroni S, La Tegola C, Bertoni G, De Vittorio M, Cingolani R, Athanassiou A (2013) Electrical response from nanocomposite PDMS-Ag NPs generated by in situ laser ablation in solution. Nanotechnology 24:035707

    Google Scholar 

  158. Anyaogu KC, Cai X, Neckers DC (2008) Gold nanoparticle photopolymerization of acrylates. Macromolecules 41:9000–9003

    Google Scholar 

  159. Spano F, Massaro A, Blasi L, Malerba M, Cingolani R, Athanassiou A (2012) In situ formation and size control of gold nanoparticles into chitosan for nanocomposite surfaces with tailored wettability. Langmuir 28:3911–3917

    Google Scholar 

  160. Govindaraju A et al (2005) Reinforcement of PDMS masters using SU-8 truss structures. J Micromech Microeng 15:1303

    Google Scholar 

  161. Mannsfeld SCB, Tee BCK, Stoltenberg RM, Chen CVHH, Barman S, Muir BVO, Sokolov AN, Reese C, Bao Z (2010) Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 9:859–864

    Google Scholar 

  162. Harsaanyi G (2000) Polymer films in sensor applications: a review of present uses and future possibilities. Sens Rev 20:98–105

    Google Scholar 

  163. Shimojo M, Namiki A, Ishikawa M, Makino R, Mabuchi K (2004) A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sens J 4:589–596

    Google Scholar 

  164. Strumpler R, Glatz-Reichenbach J (1999) Conducting polymer composites. J Electroceramics 3:329–346

    Google Scholar 

  165. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos B Eng 39:933–961

    Google Scholar 

  166. Toker D, Azulay D, Shimoni N, Balberg I, Millo O (2003) Tunneling and percolation in metal-insulator composite materials. Phys Rev B 68:041403

    Google Scholar 

  167. Lundberg B, Sundqvist B (1986) Resistivity of a composite conducting polymer as a function of temperature, pressure, and environment: applications as a pressure and gas concentration transducer. J Appl Phys 60:1074–1079

    Google Scholar 

  168. Lantada AD, Lafont P, Sanz JLM, Munoz-Guijosa JM, Otero JE (2010) Quantum tunnelling composites: characterisation and modelling to promote their applications as sensors. Sens Actuators A Phys 164:46–57

    Google Scholar 

  169. Zhang XW, Zheng PY, Yi XQ (2000) Time dependence of piezoresistance for the conductor-filled polymer composites. J Polym Sci B Polym Phys 38:2739–2749

    Google Scholar 

  170. Bloor D, Donnelly K, Hands PJ, Laughlin P, Lussey D (2005) A metal–polymer composite with unusual properties. J Phys D: Appl Phys 38:2851–2860

    Google Scholar 

  171. Canavese G, Lombardi M, Stassi S, Pirri CF (2012) Comprehensive characterization of large piezoresistive variation of Ni-PDMS composites. Appl Mech Mater 110–116:1336–1344

    Google Scholar 

  172. Edgcombe CJ, Valdrè U (2001) Microscopy and computational modelling to elucidate the enhancement factor for field electron emitters. J Microsc 203:188–194

    Google Scholar 

  173. Ausanio G, Barone A, Campana C, Iannotti V, Luponio C, Pepe G, Lanotte L (2006) Giant resistivity change induced by strain in a composite of conducting particles in an elastomer matrix. Sens Actuators A Physl 127:56–62

    Google Scholar 

  174. Canavese G, Stassi S, Stralla M, Bignardi C, Pirri CF (2012) Stretchable and conformable metal–polymer piezoresistive hybrid system. Sens Actuators A Phys 186:191–197

    Google Scholar 

  175. Bloor D, Graham A, Williams EJ, Laughlin PJ, Lussey D (2006) Metal–polymer composite with nanostructured filler particles and amplified physical properties. Appl Phys Lett 88:102103

    Google Scholar 

  176. Sun Y, Mayers B, Xia Y (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3:675–679

    Google Scholar 

  177. Chen S, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2:1003–1007

    Google Scholar 

  178. Lu HW, Liu SH, Wang XL, Qian XF, Yin J, Zhu ZK (2003) Silver nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+. Mater Chem Phys 81:104–107

    Google Scholar 

  179. Chiolerio A, Cotto M, Pandolfi P, Martino P, Camarchia V, Pirola M, Ghione G (2012) Ag nanoparticle-based inkjet printed planar transmission lines for RF and microwave applications: considerations on ink composition, nanoparticle size distribution and sintering time. Microelectron Eng 97:8–15

    Google Scholar 

  180. Molesa S, Redinger DR, Huang DC, Subramanian V (2003) High-quality inkjet-printed multilevel interconnects and inductive components on plastic for ultra-low-cost RFID applications. Mater Res Soc Sympos Proc 769:253–258

    Google Scholar 

  181. Magdassi S, Bassa A, Vinetsky Y, Kamyshny A (2003) Silver nanoparticles as pigments for water-based ink-jet inks. Chem Mater 15:2208–2217

    Google Scholar 

  182. Bidoki SM, Lewis DM, Clark M, Vakorov A, Millner PA, McGorman D (2007) Ink-jet fabrication of electronic components. J Micromech Microeng 17:967–974

    Google Scholar 

  183. Tiberto P, Barrera G, Celegato F, Coisson M, Chiolerio A, Martino P, Pandolfi P, Allia P (2013) Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles. Eur Phys J B 86:173

    Google Scholar 

  184. Soltman D, Subramanian V (2008) Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24:2224–2231

    Google Scholar 

  185. Lichtenberger M (2004) Inks Water-based. www.eng.buffalo.edu/COurses/spring04/ce457_527/Matt.pdf

  186. Lee HH, Chou KS, Huang KC (2005) Inkjet printing of nanosized silver colloids. Nanotechnology 16:2436–2441

    Google Scholar 

  187. Chiolerio A, MacCioni G, Martino P, Cotto M, Pandolfi P, Rivolo P, Ferrero S, Scaltrito L (2011) Inkjet printing and low power laser annealing of silver nanoparticle traces for the realization of low resistivity lines for flexible electronics. Microelectron Eng 88:2481–2483

    Google Scholar 

  188. Bai JG, Creehan KD, Kuhn HA (2007) Inkjet printable nanosilver suspensions for enhanced sintering quality in rapid manufacturing. Nanotechnology 18:185701

    Google Scholar 

  189. Perelaer J, De Gans BJ, Schubert US (2006) Ink-jet printing and microwave sintering of conductive silver tracks. Adv Mater 18:2101–2104

    Google Scholar 

  190. Reinhold I, Hendriks CE, Eckardt R, Kranenburg JM, Perelaer J, Baumann RR, Schubert US (2009) Argon plasma sintering of inkjet printed silver tracks on polymer substrates. J Mater Chem 19:3384–3388

    Google Scholar 

  191. Kamyshny S, Steinke J, Magdassi S (2011) Metal-based inkjet inks for printed electronics. Open Appl Phys J 4:19–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Stassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stassi, S. et al. (2014). Nanosized Gold and Silver Spherical, Spiky, and Multi-branched Particles. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_33

Download citation

Publish with us

Policies and ethics