Skip to main content

Compositionally Graded III-Nitride Nanowire Heterostructures: Growth, Characterization, and Applications

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

This chapter is meant to serve as an introduction into the use of compositionally graded III-nitride nanowires for polarization-engineered devices. An overview of both polarization-doping and polarization-engineered devices is provided. Because III-nitride nanowire heterostructures grown by plasma-assisted molecular beam epitaxy are particularly well suited to take advantage of the benefits of polarization doping, their growth and use in polarization-doped devices are covered in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NSM Archives – Physical Properties of Semiconductors (2004) http://www.ioffe.ru/SVA/NSM/Semicond/index.html 2013

  2. Taniyasu Y, Kasu M, Makimoto T (2006) An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441:325

    Article  Google Scholar 

  3. Keyes R (1975) Effect of randomness in distribution of impurity atoms on FET thresholds. Appl Phys 8:251

    Article  Google Scholar 

  4. Asenov A (1998) Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 μm MOSFET’s: A 3-D “atomistic” simulation study. IEEE Trans Electron Devices 45:2505

    Article  Google Scholar 

  5. Wong HSP, Taur Y, Frank DJ (1998) Discrete random dopant distribution effects in nanometer-scale MOSFETs. Microelectron Reliab 38:1447

    Article  Google Scholar 

  6. Wood C, Jena D (eds) (2008) Polarization effects in semiconductors: from ab initio theory to device applications. Springer, New York

    Google Scholar 

  7. Ogawa T (1968) Estimation of spontaneous polarization of hexagonal ZnS, CdS and ZnO crystals. J Phys Soc Jpn 25:1126

    Article  Google Scholar 

  8. Nakamua S, Mukai T, Senoh M (1991) High-power gan P-N-junction blue-light-emitting diodes. Jpn J Appl Phys Part 2 Lett 30:L1998

    Article  Google Scholar 

  9. Nakamura S, Senoh M, Mukai T (1993) P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes. Jpn J Appl Phys Part 2 Lett 32:L8

    Article  Google Scholar 

  10. Nakamura S, Senoh M, Nagahama S et al (1996) InGaN-based multi-quantum-well-structure laser diodes. Jpn J Appl Phys Part 2 Lett 35:L74

    Article  Google Scholar 

  11. Jena D, Alpay SP, Mantese JV (2008) Functionally graded polar heterostructures: New materials for multifunctional devices. In: Jena D, Wood C (eds) Polarization effects in semiconductors: from ab initio theory to device applications, 1st edn. Springer, New York

    Google Scholar 

  12. Mishra U, Singh J (2008) Semiconductor device physics and design. Springer, Dordrecht

    Google Scholar 

  13. Khan M, Bhattarai A, Kuznia J et al (1993) High-electron-mobility transistor based on a Gan-AlxGa1-xn heterojunction. Appl Phys Lett 63:1214

    Article  Google Scholar 

  14. Jena D, Heikman S, Green D et al (2002) Realization of wide electron slabs by polarization bulk doping in graded III-V nitride semiconductor alloys. Appl Phys Lett 81:4395

    Article  Google Scholar 

  15. Simon J, Protasenko V, Lian C et al (2010) Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327:60

    Article  Google Scholar 

  16. Li S, Ware M, Wu J et al (2012) Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN. Appl Phys Lett 101:122103

    Article  Google Scholar 

  17. Dingle R, Stormer H, Gossard A et al (1978) Electron mobilities in modulation-doped semiconductor heterojunction super-lattices. Appl Phys Lett 33:665

    Article  Google Scholar 

  18. Kuzmik J (2001) Power electronics on InAlN/(In)GaN: Prospect for a record performance. IEEE Electron Device Lett 22:510

    Article  Google Scholar 

  19. Rajan S, Wong M, Fu Y et al (2005) Growth and electrical characterization of N-face AlGaN/GaN heterostructures. Jpn J Appl Phys Part 2 Lett Express Lett 44:L1478

    Article  Google Scholar 

  20. Grundmann MJ, Mishra UK (2007) Multi-color light emitting diode using polarization-induced tunnel junctions. Physica Status Solidi C Curr Top Solid State Phys 4(7):4–2830

    Google Scholar 

  21. Simon J, Zhang Z, Goodman K et al (2009) Polarization-induced zener tunnel junctions in wide-band-gap heterostructures. Phys Rev Lett 103:026801

    Article  Google Scholar 

  22. Krishnamoorthy S, Nath DN, Akyol F et al (2010) Polarization-engineered GaN/InGaN/GaN tunnel diodes. Appl Phys Lett 97:203502

    Article  Google Scholar 

  23. Krishnamoorthy S, Park PS, Rajan S (2011) Demonstration of forward inter-band tunneling in GaN by polarization engineering. Appl Phys Lett 99:233504

    Article  Google Scholar 

  24. Li S, Zhang T, Wu J et al (2013) Polarization induced hole doping in graded AlxGa1-xN (x=0.7 ∼ 1) layer grown by molecular beam epitaxy. Appl Phys Lett 102:062108

    Article  Google Scholar 

  25. Rajan S, Xing HL, DenBaars S et al (2004) AlGaN/GaN polarization-doped field-effect transistor for microwave power applications. Appl Phys Lett 84:1591

    Article  Google Scholar 

  26. Rajan S, DenBaars S, Mishra U et al (2006) Electron mobility in graded AlGaN alloys. Appl Phys Lett 88:042103

    Article  Google Scholar 

  27. Simon J, Wang A, Xing HL et al (2006) Carrier transport and confinement in polarization-induced three-dimensional electron slabs: Importance of alloy scattering in AlGaN. Appl Phys Lett 88:042109

    Article  Google Scholar 

  28. Matthews JW, Blakeslee AE (1974) Defects in epitaxial multilayers .1. Misfit dislocations. J Cryst Growth 27:118

    Google Scholar 

  29. Lee SR, Koleske DD, Cross KC et al (2004) In situ measurements of the critical thickness for strain relaxation in AlGaN/GaN heterostructures. Appl Phys Lett 85:6164

    Article  Google Scholar 

  30. Thillosen N, Sebald K, Hardtdegen H et al (2006) The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements. Nano Lett 6:704

    Article  Google Scholar 

  31. Ertekin E, Greaney PA, Chrzan DC et al (2005) Equilibrium limits of coherency in strained nanowire heterostructures. J Appl Phys 97:114325

    Article  Google Scholar 

  32. Glas F (2006) Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys Rev B 74:121302

    Article  Google Scholar 

  33. Carnevale SD, Kent TF, Phillips PJ et al (2012) Polarization-induced pn diodes in wide-band-gap nanowires with ultraviolet electroluminescence. Nano Lett 12:915

    Article  Google Scholar 

  34. Carnevale SD, Kent TF, Phillips PJ et al (2012) Graded nanowire ultraviolet LEDs by polarization engineering. Proc SPIE 8467:84670L–84671L

    Article  Google Scholar 

  35. Jani O, Ferguson I, Honsberg C et al (2007) Design and characterization of GaN/InGaN solar cells. Appl Phys Lett 91:132117

    Article  Google Scholar 

  36. Neufeld CJ, Toledo NG, Cruz SC et al (2008) High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap. Appl Phys Lett 93:143502

    Article  Google Scholar 

  37. Hamzaoui H, Bouazzi A, Rezig B (2005) Theoretical possibilities of InxGa1-xN tandem PV structures. Solar Energy Mater Solar Cells 87:595

    Article  Google Scholar 

  38. Hsu L, Jones RE, Li SX et al (2007) Electron mobility in InN and III-N alloys. J Appl Phys 102:073705

    Article  Google Scholar 

  39. Muth JF, Lee JH, Shmagin IK et al (1997) Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl Phys Lett 71:2572

    Article  Google Scholar 

  40. Wu J, Walukiewicz W, Yu KM et al (2003) Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system. J Appl Phys 94:6477

    Article  Google Scholar 

  41. Li SX, Yu KM, Wu J et al (2005) Fermi-level stabilization energy in group III nitrides. Phys Rev B 71:161201

    Article  Google Scholar 

  42. Sarwar ATMG, Myers RC (2012) Exploiting piezoelectric charge for high performance graded InGaN nanowire solar cells. Appl Phys Lett 101:143905

    Article  Google Scholar 

  43. Sanchez-Garcia MA, Calleja E, Monroy E et al (1998) The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(111). J Cryst Growth 183:23

    Article  Google Scholar 

  44. Guo W, Zhang M, Banerjee A et al (2010) Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Lett 10:3355

    Article  Google Scholar 

  45. Yoshizawa M, Kikuchi A, Mori M et al (1997) Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy. Jpn J Appl Phys Part 2-Lett 36:L459

    Article  Google Scholar 

  46. Bertness KA, Sanford NA, Barker JM et al (2006) Catalyst-free growth of GaN nanowires. J Electron Mater 35:576

    Article  Google Scholar 

  47. Park YS, Lee SH, Oh JE et al (2005) Self-assembled GaN nano-rods grown directly on (111) Si substrates: Dependence on growth conditions. J Cryst Growth 282:313

    Article  Google Scholar 

  48. Dong YJ, Tian BZ, Kempa TJ et al (2009) Coaxial group III-nitride nanowire photovoltaics. Nano Lett 9:2183

    Article  Google Scholar 

  49. Qian F, Gradecak S, Li Y et al (2005) Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett 5:2287

    Article  Google Scholar 

  50. Geelhaar L, Cheze C, Weber WM et al (2007) Axial and radial growth of Ni-induced GaN nanowires. Appl Phys Lett 91:093113–093113-3

    Article  Google Scholar 

  51. Calleja E, Ristic J, Fernandez-Garrido S et al (2007) Growth, morphology, and structural properties of group-III-nitride nanocolumns and nanodisks. Phys Status Solidi B-Basic Solid State Phys 244:2816

    Article  Google Scholar 

  52. Kishino K, Sekiguchia H, Kikuchi A (2009) Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays. J Cryst Growth 311:2063

    Article  Google Scholar 

  53. Bertness KA, Sanders AW, Rourke DM et al (2010) Controlled nucleation of GaN nanowires grown with molecular beam epitaxy. Adv Funct Mater 20:2911

    Article  Google Scholar 

  54. Fernandez-Garrido S, Grandal J, Calleja E et al (2009) A growth diagram for plasma-assisted molecular beam epitaxy of GaN nanocolumns on Si(111). J Appl Phys 106:126102

    Article  Google Scholar 

  55. Koblmuller G, Wu F, Mates T et al (2007) High electron mobility GaN grown under N-rich conditions by plasma-assisted molecular beam epitaxy. Appl Phys Lett 91:221905–221905-3

    Article  Google Scholar 

  56. Carnevale SD, Yang J, Phillips PJ et al (2011) Three-dimensional GaN/AIN nanowire heterostructures by separating nucleation and growth processes. Nano Lett 11:866

    Article  Google Scholar 

  57. Consonni V, Knelangen M, Geelhaar L et al (2010) Nucleation mechanisms of epitaxial GaN nanowires: Origin of their self-induced formation and initial radius. Phys Rev B 81:085310

    Article  Google Scholar 

  58. Consonni V, Hanke M, Knelangen M et al (2011) Nucleation mechanisms of self-induced GaN nanowires grown on an amorphous interlayer. Phys Rev B 83:035310–035310-8

    Article  Google Scholar 

  59. Bertness KA, Roshko A, Sanford NA et al (2006) Spontaneously grown GaN and AlGaN nanowires. J Cryst Growth 287:522

    Article  Google Scholar 

  60. Songmuang R, Ben T, Daudin B et al (2010) Identification of III-N nanowire growth kinetics via a marker technique. Nanotechnology 21:295605

    Article  Google Scholar 

  61. Debnath RK, Meijers R, Richter T et al (2007) Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111). Appl Phys Lett 90:123117

    Article  Google Scholar 

  62. Dubrovskii VG, Cirlin GE, Soshnikov IP et al (2005) Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment. Phys Rev B 71:205325–205325-6

    Article  Google Scholar 

  63. Ristic J, Calleja E, Fernandez-Garrido S et al (2008) On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy. J Cryst Growth 310:4035

    Article  Google Scholar 

  64. Songmuang R, Landre O, Daudin B (2007) From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer. Appl Phys Lett 91:251902

    Article  Google Scholar 

  65. Calarco R, Meijers RJ, Debnath RK et al (2007) Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. Nano Lett 7:2248

    Article  Google Scholar 

  66. Tchernycheva M, Sartel C, Cirlin G et al (2007) Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization. Nanotechnology 18:385306

    Article  Google Scholar 

  67. Laskar MR, Carnevale SD, Sarwar ATMG et al (2013) Molecular beam epitaxy of graded-composition InGaN nanowires. J Electron Mater 42:863

    Article  Google Scholar 

  68. de la Mata M, Magen C, Gazquez J et al (2012) Polarity assignment in ZnTe, GaAs, ZnO, and GaN-AlN nanowires from direct dumbbell analysis. Nano Lett 12:2579–2586

    Article  Google Scholar 

  69. Kikuchi A, Kawai M, Tada M (2004) InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111)Si substrate. Jpn J Appl Phys Part 2-Lett Expr Lett 43:L1524

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santino D. Carnevale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carnevale, S.D., Myers, R.C. (2014). Compositionally Graded III-Nitride Nanowire Heterostructures: Growth, Characterization, and Applications. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_17

Download citation

Publish with us

Policies and ethics