Advertisement

Asynchronous Exploration of an Unknown Anonymous Dangerous Graph with O(1) Pebbles

  • Balasingham Balamohan
  • Stefan Dobrev
  • Paola Flocchini
  • Nicola Santoro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7355)

Abstract

We consider the a team of asynchronous agents that must explore an unknown graph in presence of a black hole, a node which destroys all incoming agents without leaving any observable trace. Communication is achieved using pebbles that an agent can pick up, carry, and drop. It is known that, when the graph is unknown, Δ + 1 agents are necessary, and solutions exist with those many agents, using a total of O(logΔ) pebbles, where Δ is the max node degree. On the other hand, it is also known that if the agents have a map of the graph, the problem can be solved with O(1) pebbles in total, without increasing the size of the team. In this paper we address the question of whether it is possible to locate the black hole using O(1) pebbles even if the graph is unknown, and, if so, with how many agents. We first prove that with O(1) pebbles, Δ + 1 agents are not sufficient. We next prove that, regardless of the team size, 2 pebbles are not sufficient. We then show that these bounds are tight presenting a protocol that allows to locate a black hole in an unknown anonymous graph with only 3 pebbles and Δ + 2 agents.

Keywords

Black Hole Mobile Agent Token Load Team Size Free Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balamohan, B., Flocchini, P., Miri, A., Santoro, N.: Improving the Optimal Bounds for Black Hole Search in Rings. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 198–209. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Chalopin, J., Das, S., Labourel, A., Markou, E.: Black Hole Search with Finite Automata Scattered in a Synchronous Torus. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 432–446. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Chalopin, J., Das, S., Labourel, A., Markou, E.: Tight Bounds for Scattered Black Hole Search in a Ring. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 186–197. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Chalopin, J., Das, S., Santoro, N.: Rendezvous of Mobile Agents in Unknown Graphs with Faulty Links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Czyzowicz, J., Dobrev, S., Královič, R., Miklík, S., Pardubská, D.: Black Hole Search in Directed Graphs. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 182–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Czyzowicz, J., Kowalski, D.R., Markou, E., Pelc, A.: Complexity of searching for a black hole. Fundamenta Informaticae 71(2-3), 229–242 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dobrev, S., Flocchini, P., Královic, R., Santoro, N.: Exploring an Unknown Graph to Locate a Black Hole Using Tokens. In: Navarro, G., Bertossi, L., Kohayakawa, Y. (eds.) TCS 2006. IFIP, vol. 209, pp. 131–150. Springer, Boston (2006)Google Scholar
  8. 8.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in arbitrary networks: Optimal mobile agents protocols. Distributed Computing 19(1), 1–19 (2006)CrossRefGoogle Scholar
  9. 9.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48, 67–90 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: Optimal black hole search with pebbles. Algorithmica 62(3-4), 1006–1033 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Flocchini, P., Kellett, M., Mason, P., Santoro, N.: Searching for black holes in subways. Theory of Computing Systems 50(1), 158–184 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation results for black hole search in arbitrary networks. Theoretical Computer Science 384(2-3), 201–221 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Approximation bounds for black hole search problems. Networks 52(4), 216–226 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kosowski, A., Navarra, A., Pinotti, C.M.: Synchronous black hole search in directed graphs. Theoretical Computer Science 412(41), 5752–5759 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Shi, W.: Black hole search with tokens in interconnected networks. In: 11th Int. Symp. on Stabilization, Safety, and Security of Distr. Sys (SSS), pp. 670–682 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Balasingham Balamohan
    • 1
  • Stefan Dobrev
    • 2
  • Paola Flocchini
    • 1
  • Nicola Santoro
    • 3
  1. 1.EECSUniversity of OttawaOttawaCanada
  2. 2.Institute of MathematicsSlovak Academy of SciencesBratislavaSlovak Republic
  3. 3.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations