Stable Conditions of Marine Gas Hydrate

  • Shicai Sun
  • Yuguang Ye
  • Changling Liu
  • Jian Zhang
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)


Marine gas hydrate exists below the phase equilibrium boundary which is very sensitive to temperature and pressure. Investigations of the stable conditions can provide important information for gas hydrate development and utilization. In this chapter, we summarize the apparatus and the test methods used for gas hydrate stability condition experiments and discuss the experimental data and influencing factors in different systems (including pure water, seawater, artificial porous media, marine sediment). Meanwhile, the formation and dissociation behavior of gas hydrate in sediments is also investigated. Here, our research achievements of hydrate stable conditions combined with others can provide the basic theory and experimental testing technology of hydrate stability conditions for the safety development of natural gas hydrate resources.


Hydrate Formation Hydrate Dissociation Shenhu Area Phase Equilibrium Condition Propane Hydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kvenvolden KA. Methane hydrate–a major reservoir of carbon in the shallow geosphere? Chem Geol. 1988;71:41–51.CrossRefGoogle Scholar
  2. 2.
    Mei Donghai, Liao Jian, Wang Lukun. Determination and prediction of hydrate equilibrium formation conditions. J Chem Eng Chin Univ. 1997;11(3):113–6.Google Scholar
  3. 3.
    Sun Zhigao, Wang Ruzhu, Fan Shuanshi, et al. An advance in the research on natural gas hydrate. Nat Gas Ind. 2001;1:93–6.Google Scholar
  4. 4.
    Liu Changling, Ye Yuguang, Zhang Jian, et al. Experimental technology and methods of phase equilibrium study for gas hydrate. J Ocean Univ China. 2004;34(1):153–8.Google Scholar
  5. 5.
    Ye Yuguang, Zhang Jian, Diao Shaobo, et al. Experimental technique for marine gas hydrates. Mar Geol Quat Geol. 2003;23(1):119–23.Google Scholar
  6. 6.
    Li Dongliang, Yu Guobao, Tang Cuiping, et al. Experimental investigation on hydrate formation condition of gas field in North Shanxi. J Wuhan Univ Technol. 2005;27(10):40–2.Google Scholar
  7. 7.
    Uchida T, Ebinuma T, Ishizaki T. Dissociation condition measurements of methane hydrate in confined small pores of porous glass. J Phys Chem B. 1999;103:3659–62.CrossRefGoogle Scholar
  8. 8.
    Uchida T, Ebinuma T, Takeya S, et al. Effects of pore sizes on dissociation temperatures and pressures of methane, carbon dioxide, and propane hydrates in porous media. J Phys Chem B. 2002;106:820–6.CrossRefGoogle Scholar
  9. 9.
    Handa YP, Stupin D. Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-A-radius silica gel pores. J Phys Chem. 1992;96(21):8599–603.CrossRefGoogle Scholar
  10. 10.
    Smith DH, Wilder JW, Seshadri K. Methane hydrate equilibria in silica gels with broad pore-size distributions. A I Ch E J. 2002;48:393–400.CrossRefGoogle Scholar
  11. 11.
    Wilder JW, Seshadri K, Smith DH. Resolving apparent contradictions in equilibrium measurements for clathrate hydrates in porous media. J Phys Chem B. 2001;105:9970.CrossRefGoogle Scholar
  12. 12.
    Seshadri K, Wilder JW, Smith DH. Measurements of equilibrium pressures and temperatures for propane hydrate in silica gels with different pore-size distributions. J Phys Chem B. 2001;105:2627–31.CrossRefGoogle Scholar
  13. 13.
    Zhang W, Wilder JW, Smith DH. Equilibrium pressures and temperatures for equilibria involving hydrate, free gas, and ice in porous media. In: Proceedings of the 4th International Conference on Gas Hydrates (ICGH4), Yokohama, Japan, May 19−23; 2002, p. 321−6.Google Scholar
  14. 14.
    Tohidi B, Burgass RW, Danesh A, et al. Improving the accuracy of gas hydrate dissociation point measurements. Ann N Y Acad Sci. 2000;912:924–31.CrossRefGoogle Scholar
  15. 15.
    Uchida T, Takeya S, Chuvilin EM, et al. Decomposition of methane hydrates in sand, sandstone, clays, and glass beads. J Geophys Res. 2004;109:B05206.CrossRefGoogle Scholar
  16. 16.
    Dholabhai PD, Englezoa P, Kalogerakis N, et al. Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions. Can J Chem Eng. 1991;69:800–5.CrossRefGoogle Scholar
  17. 17.
    Yongchen S, Mingjun Y, Liu Yu, et al. Influence of ions on phase equilibrium of methane hydrate. J Chem Ind Eng (China). 2009;60:1362–6.Google Scholar
  18. 18.
    Dickens GR, Quinby-Hunt MS. Methane hydrate stability in seawater. Geophys Res Lett. 1994;21(8):2115–8.CrossRefGoogle Scholar
  19. 19.
    Lu HL, Matsumoto R. Experimental studies on the possible influences of composition changes of pore water on the stability conditions of methane hydrate in marine sediments. Mar Chem. 2005;93:149–57.CrossRefGoogle Scholar
  20. 20.
    Nakamura T, Makino T, Sugahara T, et al. Stability boundaries of gas hydrates helped by methane-structure-H hydrates of ethylcyclohexane and cis-1, 2-dimethylcyclohexane. Chem Eng Sci. 2003;58(2):269–73.CrossRefGoogle Scholar
  21. 21.
    Deaton WM, Frost EM. Gas hydrates and their relation to the operation of natural-gas pipe lines. US Bur Mines Monogr. 1946;8:101.Google Scholar
  22. 22.
    Liu Changling, Ye Yuguang, Meng Qingguo, et al. Raman spectroscopic characteristics of natural gas hydrate recovered from Shenhu area in South China Sea and Qilian Mountain permafrost. Acta Chim Sin. 2010;68(18):1881–6.Google Scholar
  23. 23.
    Huang Yongyang, Zhang Guangxue. Geologic – geophysics characteristics and prospect of natural gas hydrate in Chinese sea area. Beijing: Geological Publishing House; 2009.Google Scholar
  24. 24.
    Matsumoto R, Watanabe Y, Satoh M, et al. ODP Leg 164 shipboard scientific party. J Geol Soc Japan. 1996;102:932.CrossRefGoogle Scholar
  25. 25.
    Makogon YF. Characteristics of a gas-field development in permafrost. Moscow: Nedra; 1966.Google Scholar
  26. 26.
    Kono HO, Narasimhan S, Song F, et al. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing. Powder Technol. 2002;122:239–46.CrossRefGoogle Scholar
  27. 27.
    Kang SP, Lee JW. Kinetic behaviors of CO2 hydrate in porous media and effect of kinetic promoter on the formation kinetics. Chem Eng Sci. 2010;65:1840–5.CrossRefGoogle Scholar
  28. 28.
    Kang SP, Seo Y. Kinetics of methane and carbon dioxide hydrate formation in silica gel pores. Energy Fuel. 2009;23:3711–5.CrossRefGoogle Scholar
  29. 29.
    Riestenberg D, West O, Lee SY, et al. Sediment surface effects on methane hydrate formation and dissociation. Mar Geol. 2003;198(1–2):181–90.CrossRefGoogle Scholar
  30. 30.
    Lu HL, Wright F, Okui T, et al. The characteristics of methane hydrates synthesized in sand and clay sediments. Eur Geophys Soc. 2003;5:13389.Google Scholar
  31. 31.
    Buffett BA, Zatsepina OY. Formation of gas hydrate from dissolved gas in natural porous media. Mar Geol. 2000;164:69–77.CrossRefGoogle Scholar
  32. 32.
    Tohidi B, Anderson R, Clennell MB. Visual observation of gas hydrate formation and dissociation in porous media by means of glass micromodels. Geology. 2001;29(9):867–70.CrossRefGoogle Scholar
  33. 33.
    Cha SB, Ouar H, Wildeman TR, et al. A third surface effect on hydrate formation. J Phys Chem. 1988;92(23):6492–4.CrossRefGoogle Scholar
  34. 34.
    Ouar H, Cha SB, Wildeman TR, et al. The formation of natural gas hydrates in water based drilling fluids. Trans of I Chem E (A). 1992;70:48–54.Google Scholar
  35. 35.
    Kotkoskie TS, Al-Ubaldi B, Wildeman TR, et al. Inhibition of gas hydrate in water based drilling muds. SPE Drill Eng. 1992;7:130–6.Google Scholar
  36. 36.
    Park SH, Sposito G. Do montmorillonite surfaces promote methane hydrate formation Monte Carlo and molecular dynamics simulation. J Phys Chem B. 2003;107:2281–90.CrossRefGoogle Scholar
  37. 37.
    Titiloye JO, Skipper NT. Molecular dynamics simulation of methane in sodium montmorillonite clay hydrates at elevated pressures and temperatures. Mol Phys. 2001;99(10):899–906.CrossRefGoogle Scholar
  38. 38.
    Cygan RT, Guggenheim S, Groos AFK. Molecular models for the intercalation of methane hydrate comp lexes in montmorillonite clay. J Phys Chem B. 2004;108:15141–9.CrossRefGoogle Scholar
  39. 39.
    Lu Xiancai, Yang Tao, Liu Xiandong, et al. Recent advance in study of methane hydrate stability in porous media. Geoscience. 2005;19:89.Google Scholar
  40. 40.
    Clennell MB, Martin H, James SB, et al. Formation of natural gas hydrates in marine sediments 1: conceptual model of gas hydrate growth conditioned by host sediment properties. J Geophys Res. 1999;104(B10):22985–3003.CrossRefGoogle Scholar
  41. 41.
    Chen Qiang, Ye Yuguang, Liu Changling, et al. Research on formation kinetics of methane hydrate in porous media. Mar Geol Quat Geol. 2007;27(1):111–6.Google Scholar
  42. 42.
    Turner DJ, Cherry RS, Sloa ED. Sensitivity of methane hydrate phase equilibria to sediment pore size. Fluid Phase Equilib. 2005;228(29):505–10.CrossRefGoogle Scholar
  43. 43.
    Seo Y, Lee H, Uchida T. Methane and carbon dioxide hydrate phase behavior in small porous silica gels: three-phase equilibrium determination and thermodynamic modeling. Langmuir. 2002;18:9164–70.CrossRefGoogle Scholar
  44. 44.
    Kang SP, Ryu HJ, Seo Y. Phase behavior of CO2 and CH4 hydrate in porous media. World Acad Sci Eng Technol. 2007;33:183–8.Google Scholar
  45. 45.
    Zhang W, Wilder JW, Smith DH. Methane hydrate-ice equilibria in porous media. J Phys Chem B. 2003;107:13084–9.CrossRefGoogle Scholar
  46. 46.
    Zhang W, Wilder JW, Smith DH. Interpretation of ethane hydrate equilibrium data for porous media involving hydrate-ice equilibria. A I Ch E J. 2002;48:2324–31.CrossRefGoogle Scholar
  47. 47.
    Smith DH, Seshadri K, Uchida T, et al. Thermodynamics of methane, propane, and carbon dioxide hydrates in porous glass. A I Ch E J. 2004;50(7):1589–98.CrossRefGoogle Scholar
  48. 48.
    Anderson R, Llamedo M, Tohidi B, et al. Characteristics of clathrate hydrate equilibria in mesopores and interpretation of experimental data. J Phys Chem B. 2003;107:3500–6.CrossRefGoogle Scholar
  49. 49.
    Anderson R, Llamedo M, Tohidi B, et al. Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica. J Phys Chem B. 2003;107:3507–14.CrossRefGoogle Scholar
  50. 50.
    Kang SP, Lee JW, Ryu HJ. Phase behavior of methane and carbon dioxide hydrates in meso- and macro-sized porous media. Fluid Phase Equilib. 2008;274(1–2):68–72.CrossRefGoogle Scholar
  51. 51.
    Dicharry C, Gayet P, Marion G, et al. Modeling heating curve for gas hydrate dissociation in porous media. J Phys Chem B. 2005;109(36):17205–16.CrossRefGoogle Scholar
  52. 52.
    Seo Y, Lee S, Cha I, et al. Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels. J Phys Chem B. 2009;113:5487–92.CrossRefGoogle Scholar
  53. 53.
    Bondarev EA, Groisman AG, Savvin AZ. Porous medium effect on phase equilibrium of tetrahydrofuran hydrate. In: Proceedings of the 2nd International Conference on Natural Gas Hydrates, 2−6 June 1996, Toulouse, France, p. 89.Google Scholar
  54. 54.
    Lu HL, Matsumoto R. Preliminary experimental results of the stable P-T conditions of methane hydrate in a nannofossil-rich claystone column. Geochem J. 2002;36:21–30.CrossRefGoogle Scholar
  55. 55.
    Englezos P, Hall S. Phase equilibrium data on carbon dioxide hydrate in the presence of electrolytes, water soluble polymers and montmorillonite. Can J Chem Eng. 1994;72:887–93.CrossRefGoogle Scholar
  56. 56.
    Ye Yuguang, Liu Changling, Liu Shouquan. Experimental studies on several significant problems related marine gas hydrate. High Technol Lett. 2004;10(Suppl):352–9.Google Scholar
  57. 57.
    Sun Shicai, Ye Yuguang, Liu Changling, et al. Preliminary experiment of stable P-T conditions of methane hydrate in quartz sand with multi-step dissociation method. Geoscience. 2010;24:638–42.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shicai Sun
    • 1
  • Yuguang Ye
    • 2
  • Changling Liu
    • 2
  • Jian Zhang
    • 2
  1. 1.Department of Building environment and equipment Engineering, School of civil engineering and architectureShandong University of Science and TechnologyQingdaoChina
  2. 2.Gas Hydrate LaboratoryQingdao Institute of Marine Geology, China Geological SurveyQingdaoChina

Personalised recommendations