Development of the Experiment Detection Technique

Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

Three detection techniques, namely, acoustic, resistivity, and time domain reflectometry (TDR) methods, are available here to measure the physical properties of gas hydrate-bearing sediments. These techniques have been developed from repeated experiments and prove suitable for tests of gas hydrate. The acoustic detection technique contains a traditional acoustic detection and a new kind of bender element technique, which is used to measure acoustic velocities of hydrated consolidated sediments and hydrated unconsolidated sediments, respectively. A precision resistance testing system is developed to monitor chemical reactions and also study dynamic equilibrium according to the frequency response characteristics of the system. TDR is successfully introduced in detecting hydrate saturations in real time during hydrate formation and dissociation in sediments. Such technical innovation can guarantee smooth experimental research. In particular, the TDR technique, combined with other methods, provides a very promising approach to these experiments. It can detect, in real time, hydrate saturation in sediments and lets us know the quantitative relationships between the various physical parameters and hydrate saturation.

Keywords

Hydrate Formation Time Domain Reflectometry Methane Hydrate Bender Element Hydrate Saturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Winters WJ, Pecher IA, Booth JS, et al. Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI). Geol Surv Can Bull. 1999;544:241–50.Google Scholar
  2. 2.
    Winters WJ, Waite WF, Mason DH, et al. Sediment properties associated with gas hydrate formation. In: 4th International Conference on Gas Hydrate, Yokohama, Japan, May 19−23; 2002, p. 722−7.Google Scholar
  3. 3.
    Winters WJ, Waite WF, Pecher IA, et al. Comparison of methane gas hydrate formation on physical properties of fine- and coarse-grained sediments. In: AAPG Hedberg Conference “Gas hydrate: Energy Resource Potential and Associated Geologic Hazards”, Vancouver, BC, Canada, 12−16 Sept; 2004, p. 1−5.Google Scholar
  4. 4.
    Winters WJ, Waite WF, Mason DH, et al. Methane gas hydrate effect on sediment acoustic and strength properties. J Pet Sci Eng. 2007;56:127–35.CrossRefGoogle Scholar
  5. 5.
    Waite WF, Winters WJ, Mason DH. Methane hydrate formation in partially water-saturated Ottawa sand. Am Mineral. 2004;89:1202–7.Google Scholar
  6. 6.
    Waite WF, Kneafsey TJ, Winters WJ, et al. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization. J Geophys Res. 2008;113(B7):1–12.CrossRefGoogle Scholar
  7. 7.
    Priest JA, Best A, Clayton C, et al. A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand. J Geophys Res. 2005;110:B04102.CrossRefGoogle Scholar
  8. 8.
    Priest JA, Rees EVL, Clayton C. Influence of gas hydrate morphology on the seismic velocities of sands. J Geophys Res. 2009;114:B11205. doi: 10.1029/2009JB006284.CrossRefGoogle Scholar
  9. 9.
    Yang J, Llamedo M, Marinakis D, et al. Successful application of a versatile ultrasonic test system for gas hydrates in unconsolidated sediments. Paper presented at Fifth International Conference on Gas Hydrates, Trondheim, Norway, 12−16 June; 2005.Google Scholar
  10. 10.
    Yun TS, Francisca FM, Santamarina JC. Compressional and shear wave velocities in uncemented sediment containing gas hydrate. Geophys Res Lett. 2005;32:L10609. doi: 10.1029/2005GL022607.CrossRefGoogle Scholar
  11. 11.
    Yun TS, Santamarina JC, Ruppel C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. J Geophys Res. 2007;112:B04106.CrossRefGoogle Scholar
  12. 12.
    Yun TS, Narsilio GA, Santamarina JC, et al. Instrumented pressure testing chamber for characterizing sediment cores recovered at in situ hydrostatic pressure. Mar Geol. 2006;229:285–93.CrossRefGoogle Scholar
  13. 13.
    Lee JY, Yun TS, Santamarina JC, et al. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments. Geochem Geophy Geosys. 2007;8:Q06003. doi: 10.1029/2006GC001531.CrossRefGoogle Scholar
  14. 14.
    Onishi K, Matsuoka T, Tsukada K. P-wave velocity change of porous media due to the freezing and thawing process of methane hydrate. Paper presented at Sixth International Conference on Gas Hydrate, British Columbia, Canada; 2008Google Scholar
  15. 15.
    Sothcott J, McCann C, O’Hara SG. The influence of two different pore fluids on acoustic properties of reservoir sandstones at sonic and ultrasonic frequencies. 70th Ann. Mtg., Soc. Expi. Geophys., Expanded Abstracts, vol. 2; 2000, p. 1883−6.Google Scholar
  16. 16.
    Ye Yuguang, Liu Changling, Liu Shouquan, et al. Simulated experimental study on several significant research on the sea floor hydrate. High Technol Lett. 2004;10(Suppl):352–9.Google Scholar
  17. 17.
    Hu Gaowei, Ye Yuguang, Zhang Jian, et al. Study on gas hydrate formation-dissociation and its acoustic responses in unconsolidated sands. Geoscience. 2008;22(3):465–74.Google Scholar
  18. 18.
    Ye Yuguang, Zhang Jian, Hu Gaowei, et al. Combined detection technique for ultrasonic and time domain reflectometry in gas hydrate. Mar Geol Quat Geol. 2008;28(5):101–7.Google Scholar
  19. 19.
    Shirley DJ. An improved shear wave transducer. J Acoust Soc Am. 1978;63(5):1643–5.CrossRefGoogle Scholar
  20. 20.
    Shirley DJ, Hampton LD. Shear wave measurements in laboratory sediments. J Acoust Soc Am. 1978;63(2):607–13.CrossRefGoogle Scholar
  21. 21.
    Dyvik R, Madshus C. Lab measurements of Gmax using bender element. In: Proceedings of ASCE Convention on Advances in the Art of Testing Soils under Cyclic Conditions; 1985, p. 186−96.Google Scholar
  22. 22.
    Jovicic V, Coop MR, Simic M. Objective criteria for determining Gmax from bender element tests. Geotechnique. 1996;46(2):357–62.CrossRefGoogle Scholar
  23. 23.
    Jovicic V, Coop MR. Interpretation of bender element tests. Geotechnique. 1997;47(3):875.Google Scholar
  24. 24.
    Zeng X, Ni B. Application of bender elements in measuring Gmax of sand under K0 condition. Geotech Test J. 1998;21(3):251–63.CrossRefGoogle Scholar
  25. 25.
    Arulnathan R, Boulanger RW, Reimer MF. Analysis of bender element tests. Geotech Test J. 1998;21(2):120–31.CrossRefGoogle Scholar
  26. 26.
    Clayton CRI, Theron M, Best AI. The measurement of vertical shear-wave velocity using side-mounted bender elements in the triaxial apparatus. Geotechnique. 2004;54(7):495–8.CrossRefGoogle Scholar
  27. 27.
    Ji Meixiu, Chenx Chen, Huang Bo. Method for precisely determining shear wave velocity of soil from bender element tests. Chin J Geotech Eng. 2003;25(6):732–6.Google Scholar
  28. 28.
    Thomann TG, Hryciw RD. Laboratory measurement of small strain shear modulus under K0 conditions. Geotechn Test J. 1990;13(2):97–105.CrossRefGoogle Scholar
  29. 29.
    Souto A, Hartikainen J, Ozudogru K. Measurement of dynamic parameters of road pavement materials by the bender element and resonant column tests. Geotechnique. 1994;44(3):519–26.CrossRefGoogle Scholar
  30. 30.
    Viggiani G, Atkinson JH. Interpretation of bender element tests. Geotechnique. 1997;45(1):149–54.Google Scholar
  31. 31.
    Leong EC, Cahyadi J, Rahardjo H. Measuring shear and compression wave velocities of soil using bender-extender elements. Can Geotech J. 2009;46:792–812.CrossRefGoogle Scholar
  32. 32.
    Lee JS, Santamarina JC. Bender elements: performance and signal interpretation. J Geotech Geoenviron Eng. 2005;131:1063–70.CrossRefGoogle Scholar
  33. 33.
    Chen Yunmin, Zhou Yanguo, Huang Bo. International parallel test on the measurement of shear modulus of sand using bender elements. Chin J Geotechn Eng. 2006;28(7):874–80.Google Scholar
  34. 34.
    Huang Bo, Yin Jianhua, Chen Yunmin, et al. Measurements of elastic shear modulus Gmax using piezoceramic bender elements. J Vib Eng. 2001;14(2):155–60.Google Scholar
  35. 35.
    Ji Meixiu. Study on shear wave velocity of piezoceramic bender elements and dynamic properties of saturated yielding soil. Doctor Dissertations of Zhejiang University, Zhejiang University, Hangzhou; 2005.Google Scholar
  36. 36.
    Hamstd MA, Gallagher AO, Gary JA. Wavelet transform applied to acoustic emission signals. J Acoust Emiss. 2002;20:39–82.Google Scholar
  37. 37.
    Gaul L, Hurlebaus S. Identification of the impact location on a plate using wavelets. Mech Sys Signal Process. 1997;12(6):783–95.CrossRefGoogle Scholar
  38. 38.
    Ding Y, Reuben RL, Steel JA. A new method for waveform analysis for estimating AE wave arrival times using wavelet dissociation. NDT&E Int. 2004;37:279–90.CrossRefGoogle Scholar
  39. 39.
    Eong JH, Jang YS. Wavelet analysis of plate wave propagation in composite laminates. Compos Struct. 2000;49:443–50.CrossRefGoogle Scholar
  40. 40.
    Suzuki H, Kinjo T, Hayashi Y, et al. Wavelet transform of acoustic emission signals. J Acoust Emiss. 1996;14(2):69–84.Google Scholar
  41. 41.
    Takemoto M, Nishino H, Ono K. Wavelet transform-application to AE signals analysis. Acoustic Emission-Beyond the Millennium. New York: Elsevier; 2000. p. 35–56.Google Scholar
  42. 42.
    Mallat S. A wavelet tour of signal processing. San Diego: Academic; 1998.Google Scholar
  43. 43.
    Coifman RR, Meyer Y, Wickerhauser MV. Wavelet analysis and signal processing. In: Ruskai MB et al., editors. Wavelets and their applications. Boston: Jones and Bartlett; 1992. p. 153–78.Google Scholar
  44. 44.
    Vallen-Systeme GmbH, Munich, Germany, http://www.vallen.de/wavelet/index.html; 2001.
  45. 45.
    Gardner W, Kirkham D. Determination of soil moisture by neutron scattering. Soil Sci. 1951;73:391–401.CrossRefGoogle Scholar
  46. 46.
    Reginato RJ, van Bavel CHM. Soil water measurement with gamma attenuation. Soil Sci Soc Am Proc. 1964;28:721–4.CrossRefGoogle Scholar
  47. 47.
    Zhao Zhao, He Xingdong, Duan Zhenghu, et al. Application of electrical resistance method on monitoring the soil moisture dynamics in sandy land. J Desert Res. 2000;20(3):323–5.Google Scholar
  48. 48.
    Huisman JA, Hubbard SS, Redman JD, et al. Measuring soil water content with ground penetrating radar: a review. Vadose Zone J. 2003;2:476–91.Google Scholar
  49. 49.
    Topp GC, Davis JL, Annan AP. Electromagnetic determination of soil-water content: measurement in coaxial transmission line. Water Resour Res. 1980;16(3):574–82.CrossRefGoogle Scholar
  50. 50.
    Noborio K. Measurement of soil water content and electrical conductivity by time domain reflectometry: a review. Comput Electron Agric. 2001;31:213–37.CrossRefGoogle Scholar
  51. 51.
    Dasberg S, Dalton FN. Time domain reflectometry: field measurement of soil water content and electrical conductivity. Soil Sci Soc Am J. 1985;49:293–7.CrossRefGoogle Scholar
  52. 52.
    Smith MW, Patterson DE. Determining the unfrozen water content in soils by time-domain reflectometry. Atm Ocean. 1984;22(2):261–3.CrossRefGoogle Scholar
  53. 53.
    Sass O. Rock moisture measurements: techniques, results, and implications for weathering. Earth Surf Process Landf. 2005;30:359–74.CrossRefGoogle Scholar
  54. 54.
    Wraith JM, Robinson DA, Jones SB, et al. Spatially characterizing apparent electrical conductivity and water content of surface soils with time domain reflectometry. Comput Electron Agric. 2005;46:239–61.CrossRefGoogle Scholar
  55. 55.
    Dalton FN, Herkrlrath WN, Rawlins DS, et al. Time domain reflectometry; simultaneous measurements of soil water and electrical conductivity with a single probe. Science. 1984;224:989–90.CrossRefGoogle Scholar
  56. 56.
    Nissen HH, Ferre PA, Moldrup P. Time domain reflectometry developments in soil science: unbalanced two-rod probe spatial sensitivity and sampling volume. Soil Sci. 2003;168(2):77–83.CrossRefGoogle Scholar
  57. 57.
    Wright JF, Nixon FM, Dallimore SR, et al. A method for direct measurement of gas hydrate amounts based on the bulk dielectric properties of laboratory test media. In: Fourth International Conference on Gas Hydrate, Yokohama; 2002, p. 745−9.Google Scholar
  58. 58.
    Gong Yuanshi, Li Zizhong, Liao Chaozi, et al. Determination of soil moisture of farmland by time domain reflectometer. Adv Water Sci. 1997;18(4):329–34.Google Scholar
  59. 59.
    Wang Shaoling, Yang Meixue, Toshio Koike, et al. Application of time-domain-reflectometer to researching moisture variation in active layer on the Tibetan Plateau. J Glaciol Geocryol. 2000;22(1):78–84.Google Scholar
  60. 60.
    Ren Tusheng, Shao Ming’an, Ju Zhaoqiang. Measurement of soil physical properties with thermo-time domain reflectometry. Appl Acta Pedol Sin. 2004;41(2):225–9.Google Scholar
  61. 61.
    Diao Shaobo, Ye Yuguang, Yue Yingjie, et al. Measurement of thermal-physical parameters of gas hydrate in porous media. Rock Miner Anal. 2008;27(3):165–8.Google Scholar
  62. 62.
    Kittel C. Introduction to solid state physics. 3rd ed. New York: Wiley; 1960.Google Scholar
  63. 63.
    Campbell JE. Dielectric properties and influence of conductivity in soil at one to fifty megahertz. Soil Sci Soc Am J. 1990;54:332–41.CrossRefGoogle Scholar
  64. 64.
    Heimovaara TJ. Frequency domain analysis of time domain reflectometry waveforms: 1. measurement of the complex dielectric permittivity of soils. Water Resour Res. 1994;30(2):189–99.CrossRefGoogle Scholar
  65. 65.
    Zegelin SJ, White I, Jenkins DR. Improved field probes for soil water content and electrical conductivity measurements using time domain reflectometry. Water Resour Res. 1989;25(11):2367–76.CrossRefGoogle Scholar
  66. 66.
    Robinson DA, Friedman SP. Parallel plates compared with conventional reflectometry rodsas TDR waveguides for sensing soil moisture. Subsurf Sens Technol Appl. 2000;1(4):137–51.CrossRefGoogle Scholar
  67. 67.
    Scott BJ, Jon MW, Dani O. Time domain reflectometry measurement principle and applications. Hydrol Process. 2002;16:141–53.CrossRefGoogle Scholar
  68. 68.
    Hu Gaowei, Ye Yuguang, Diao Shaobo, et al. Research of time domain reflectometry in measuring water content of marine sediments. Geoscience. 2010;24(3):622–6.Google Scholar
  69. 69.
    Stoll RD, Bryan GM. Physical properties of the sediments containing gas hydrates. J Geophys Res. 1979;84(B4):1629–34.CrossRefGoogle Scholar
  70. 70.
    Cook JG, Leaist DG. An exploratory study of the thermal conductivity of methane hydrate. Geophys Res Lett. 1983;10(5):397–9.CrossRefGoogle Scholar
  71. 71.
    Waite WF, Pinkston J, Stephen HK. Preliminary laboratory thermal conductivity measurement in pure methane hydrate and methane hydrate-sediment mixtures. A Progress Report. In: Proceeding of the Fourth International Conference on Gas Hydrates, Yokohama, Japan, 19–23 May; 2002, p. 728−33.Google Scholar
  72. 72.
    Yoshitaka Y, Taro K, Michica O, et al. Measurement of conductivity of artificial hydrate sediment sample. In: Proceeding of the Fourteenth International Offshore and Polar Engineering Conference Toulon, France, 23−28 May; 2004. ISBN 1-880653-62-1; ISSN 1098−6189.Google Scholar
  73. 73.
    Huang Duzi. Thermal conductivity of gas hydrate. Chemistry. 2004;10:737–42.CrossRefGoogle Scholar
  74. 74.
    Huang Duzi. Measurements of gas hydrate composition and its thermal conductivity. Chin J Geophys. 2005;48(5):1125–31.Google Scholar
  75. 75.
    Peng Hao. The determination of thermal conductivity of tetrahydrofuran hydrate at atmospheric pressure by transient plane source method. Chemistry. 2005;12:923–7.Google Scholar
  76. 76.
    Kluitenbeyg GJ, Ham JM, Bristow KL. Error analysis of heat pulse method for measuring soil volumetric heat capacity. Soil Sci Soc Am. 1993;57:1444–51.CrossRefGoogle Scholar
  77. 77.
    Kluitenbeyg GJ, Bristow KL, Das BS. Error analysis of heat pulse method for measuring soil heat capacity, diffusivity, and conductivity. Soil Sci Soc Am. 1995;59:719–26.CrossRefGoogle Scholar
  78. 78.
    Buffett BA, Zatsepina OY. Formation of gas hydrate from dissolved gas in natural porous media. Mar Geol. 2000;164:69–77.CrossRefGoogle Scholar
  79. 79.
    Zhao Hongwei, Diao Shaobo, Ye Yuguang, et al. Technique of detecting impedance of hydrate in porous medium. Mar Geol Quat Geol. 2005;25(1):137–41.Google Scholar
  80. 80.
    Chen Qiang, Liu Changling, Ye Yuguang. Preliminary research about the nucleation of gas hydrate in porous media. Acta Pet Sin (Pet Process Sect). 2008;24(3):345–9.Google Scholar
  81. 81.
    Spangenberg E, Kulenkampff J. Physical properties of gas hydrate-bearing sediments. In: 5th International Conference on Gas Hydrate, Trondheim, Norway; 2005, p. 587−96.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Gas Hydrate LaboratoryQingdao Institute of Marine Geology, China Geological SurveyQingdaoChina

Personalised recommendations