Natural Gas Hydrate Dissociation

  • Qingguo Meng
  • Changling Liu
  • Qiang Chen
  • Yuguang Ye
Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

Experimental study of natural gas hydrate dissociation can provide a theoretical basis and technical reserves for future hydrate exploitation. Hydrate dissociation includes the thermodynamic and dynamic processes. Once thermodynamic conditions of the dissociation are satisfied, the dynamics plays a significant role for hydrate dissociation. Here, we establish and describe the techniques and methods for hydrate dissociation research from both the macroscopic and microscopic views. Macroscopic dissociation experiments mainly focus on the reaction devices, detection methods, and technical approach, including methane hydrate and different natural gas hydrates dissociation in vacuum. Microscopic dissociation experiment introduces an experimental technique to observe the microprocess of THF hydrate dissociation in situ using nuclear magnetic resonance imaging, intending to investigate the micro-mechanism of hydrate dissociation.

Keywords

Porous Medium Methane Hydrate Hydrate Dissociation Dissociation Pressure Shenhu Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zhou Xitang, Tao Xianhua, Pang Chongjun. Progress in kinetics research on natural gas hydrate decomposition. Nat Gas Chem Ind. 2006;31(5):70–3.Google Scholar
  2. 2.
    Sloan ED. Clathrate hydrates of natural gases. 2nd ed. New York: Marcel Dekker; 1998. p. 223–4.Google Scholar
  3. 3.
    Qiu Junhong, Guo Tianmin. Review of research on hydrate formation and decomposition dynamics research. J Chem Ind Eng (China). 1995;46(6):741–56.Google Scholar
  4. 4.
    Lin Wei, Chen Guangjin. Review of research on the dissociation kinetics of gas hydrate. Chin J Process Eng. 2004;4(1):69–74.Google Scholar
  5. 5.
    Chen Qiang, Zhao Guangtao, Liu Changling. Progress in kinetics of natural gas hydrate under different reaction systems. Mar Sci. 2006;30:93–6.Google Scholar
  6. 6.
    Mattew AC, Bishnoi PR. Determination of the intrinsic rate constant and activation energy of CO2 gas hydrate formation using in-situ particle size analysis. Chem Eng Sci. 2004;59(14):2983–93.CrossRefGoogle Scholar
  7. 7.
    Kamath VA, Holder GD. Dissociation heat transfer characteristics methane hydrates. A I Ch E J. 1987;33(2):347–50.CrossRefGoogle Scholar
  8. 8.
    Kamath VA, Holder GD, Angert PF. Three phase interfacial heat transfer during the dissociation of propane hydrates. Chem Eng Sci. 1984;39(10):1435–42.CrossRefGoogle Scholar
  9. 9.
    Selim MS, Sloan ED. Heat and mass transfer during the dissociation of hydrates in porous media. A I Ch E J. 1989;35(6):1049–52.CrossRefGoogle Scholar
  10. 10.
    Ullerich JW, Selim MS, Sloan ED. Theory and measurement of hydrate dissociation. A I Ch E J. 1987;33(5):747–52.CrossRefGoogle Scholar
  11. 11.
    Sun Changyu, Chen Guangjin, Guo Tianmin. Methane hydrate decomposition at constant temperature and pressure. Geochimica. 2003;32(2):112–6.Google Scholar
  12. 12.
    Tian Long, Fan Shuanshi, Hao Wenfeng. Methane hydrate dissociation at normal pressure. J Wuhan Univ Technol. 2006;28(7):23–6.Google Scholar
  13. 13.
    He Xiaoxia, Yu Jinsong, Ma Yinghai, et al. Particle shrinking dynamic model for methane hydrate decomposition. Nat Gas Geosci. 2005;16(6):818–21.Google Scholar
  14. 14.
    Kim HC, Bishnoi PR, Heidemann RA. Kinetics of methane hydrate decomposition. Chem Eng Sci. 1987;42(7):1645–53.CrossRefGoogle Scholar
  15. 15.
    Jamaluddin AKM, Kalogerakis N, Bishnoi PR. Modeling of decomposition of a synthetic core of methane gas hydrate by coupling intrinsic kinetics with heat transfer rates. Phys Chem. 1989;67(6):948–54.Google Scholar
  16. 16.
    Matthew AC, Bishnoi PR. Measuring and modeling the rate of decomposition of gas hydrates formed from mixtures of methane and ethane. Chem Eng Sci. 2001;56(16):4715–24.CrossRefGoogle Scholar
  17. 17.
    Matthew AC, Bishnoi PR. Determination of the intrinsic rate of ethane gas hydrate decomposition. Chem Eng Sci. 2000;55(21):4869–83.CrossRefGoogle Scholar
  18. 18.
    Matthew AC, Bishnoi PR. Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition. Can J Chem Eng. 2001;79(1):143–7.CrossRefGoogle Scholar
  19. 19.
    Ohgaki K, Matsubara T, Yamanaka S, et al. Decomposition of CO2, CH4 and CO2−CH4 mixed gas hydrates. J Chem Eng Jpn. 1997;30(2):310–4.CrossRefGoogle Scholar
  20. 20.
    Sun Changyu, Ma Changfeng, Chen Guangjin, et al. Kinetics of decomposition for carbon dioxide hydrate. J Univ Pet China. 2001;25(3):8–10.Google Scholar
  21. 21.
    Gudmundsson JS, Parlaktuna M, Khokhar AA. Storing of natural gas as frozen hydrate. SPE Prod. & Facilities. 1994;9(1):69–73.Google Scholar
  22. 22.
    Stern LA, Susan C, Stephen HK. Anomalous preservation of pure methane hydrate at 1 atm. Phys Chem B. 2001;105(9):1756–62.CrossRefGoogle Scholar
  23. 23.
    Ershov ED, Yakushev VS. Experimental research on gas hydrate decomposition in frozen rocks. Cold Reg Sci Technol. 1992;20(2):147–56.CrossRefGoogle Scholar
  24. 24.
    Hideyuki Shirota, Izuo Aya, Sadahiro Namie. Measurement of methane hydrate dissociation for application to natural gas storage and transportation. In: Yasuhiko H Mori, editor. Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, Japan: Yokohama Symposia; 2002, p. 972−7.Google Scholar
  25. 25.
    Falenty A, Werner FK. The formation and decomposition kinetics of gas hydrates at sub-zero temperatures. In: Proceedings of the 6th International Conference on Gas Hydrates, Vancouver, British Columbia, Canada; 2008.Google Scholar
  26. 26.
    Zhan Jing, Wu Qingbai, Jiang Guanli. Effect of particle size of ice on methane hydrate self-preservation below freezing point. Nat Gas Geosci. 2008;19(4):577–80.Google Scholar
  27. 27.
    Ding Liying, Geng Chunyu, Zhao Yuehong, et al. Dynamics simulation of molecules for methane hydrate decomposition and self-protection effect. Sci in China (B). 2008;38(2):161–9.Google Scholar
  28. 28.
    Pang Weixin, Chen Guangjin. Dissociation experiment of methane hydrate. J Chem Ind Eng (China). 2008;59(3):681–6.Google Scholar
  29. 29.
    Perers DJ, Selim MS, Sloan ED. Hydrate dissociation in pipelines by two-sided depressurization experiment and model. In: Holder GD, Bishnoi PR, editors. Gas hydrates: challenges for the future, vol. 912. New York: NYAS; 2001. p. 304–13.Google Scholar
  30. 30.
    Kelkar S, Selim MS, Sloan ED. Hydrate dissociation rates in pipelines. Fluid Phase Equilib. 1998;150–151:371–82.CrossRefGoogle Scholar
  31. 31.
    Bollavaram P, Sloan ED. Pipeline hydrate dissociation: effects of crystal structure. In: Yasuhiko H Mori, editor. Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, Yokohama Symposia; 2002, p. 947−54.Google Scholar
  32. 32.
    Yousif MH, Abass HH, Selim MS, et al. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media. SPE Reserv Eng. 1991;6(1):69–76.Google Scholar
  33. 33.
    Handa YP, Stupin DY. Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-Å-radius silica gel pores. Phys Chem. 1992;96(21):8599–603.CrossRefGoogle Scholar
  34. 34.
    Uchida T, Ebinuma T, Ishizaki T. Dissociation condition measurements of methane hydrate in confined small pores of porous glass. Phys Chem. 1999;103(18):3659–62.Google Scholar
  35. 35.
    Masuda Y, Fujinaga Y, Naganawa S, et al. Modelling and experimental studies on dissociation of methane gas hydrates in Berea sandstone cores. In: Proceedings of the 3rd International Conference on Gas Hydrates, Salt Lake City, UT; 1999, p. 18−22.Google Scholar
  36. 36.
    Liang MY, Chen GJ, Sun CY, et al. Experimental and modeling study on decomposition kinetics of methane hydrates in different media. Phys Chem B. 2005;109(40):19034–41.CrossRefGoogle Scholar
  37. 37.
    Sun XF, Mohanty KK. Kinetic simulation of methane hydrate formation and dissociation in porous media. Chem Eng Sci. 2006;61(11):3476–95.CrossRefGoogle Scholar
  38. 38.
    Liu CL, Lu HL, Ye YG, et al. Raman spectroscopic observations on the structural characteristics and dissociation behavior of methane hydrates synthesized in silica sands with various sizes. Energy Fuel. 2008;22(6):3986–8.CrossRefGoogle Scholar
  39. 39.
    Liu Jiang, Yan Lijun. Kinetics of methane hydrate dissociation in active carbon. Acta Chim Sin. 2002;60(8):1385–9.Google Scholar
  40. 40.
    Zhou Xitang, Fan Shuanshi, Liang Deqing, et al. Experimental research on the decomposition of methane hydrate by depressurization in quartz sands. Nat Gas Chem Ind. 2007;32(1):52–5.Google Scholar
  41. 41.
    Chen Qiang, Ye Yuguang, Meng Qingguo, et al. Experimental research of methane hydrate dissociation. Geoscience. 2008;22(3):475–9.Google Scholar
  42. 42.
    Ren Shaoran, Liu Jianxin, Liu Yixing, et al. Experimental study on formation and dissociation of methane hydrate in porous media. Acta Pet Sin. 2009;30(4):583–7.Google Scholar
  43. 43.
    Cheng Yuanfang, Shen Haicao, Zhao Yizhong, et al. Numerical simulation with finite element method on natural gas hydrate decomposition by depressurization in porous media. J China Univ Pet (Edition of Natural Science). 2009;33(3):85–9.Google Scholar
  44. 44.
    Holder GD, Angert PF, Godbole SP. Simulation of gas production from a reservoir containing both gas hydrates and free natural gas. In: Proceedings of 57th Society of Petroleum Engineers Technology Conference, New Orleans, Louisiana. SPE Paper 11005; 1982, p. 26−9.Google Scholar
  45. 45.
    Handa YP. A calorimetric study of naturally occurring gas hydrate. Ind Eng Chem Res. 1988;27(5):872–4.CrossRefGoogle Scholar
  46. 46.
    Makogon YF. Hydrates of hydrocarbons. Tulsa: Penn Well Books; 1997. p. 246.Google Scholar
  47. 47.
    Chuang J, Goodarz A, Duane HS. Natural gas production from hydrate decomposition by depressurization. Chem Eng Sci. 2001;56(20):5801–14.CrossRefGoogle Scholar
  48. 48.
    Naval G, Michael W, Subhash S. Analytical modeling of gas recovery from in situ hydrate dissociation. Pet Sci Eng. 2001;29(2):115–27.CrossRefGoogle Scholar
  49. 49.
    Meng Qingguo, Liu Changling, Ye Yuguang, et al. Experimental Research on Dissociation Kinetics of Different Gas Hydrates. Geoscience. 2010;24(3):607–13.Google Scholar
  50. 50.
    Chen Guangjin, Guo Tianmin. Thermodynamic modeling of hydrate formation based on new concepts. Fluid Phase Equilibr. 1996;122:43–65.CrossRefGoogle Scholar
  51. 51.
    Goel N, Wiggins M, Shah S. Analytical modeling of gas recovery from in situ hydrates dissociation. J Pet Sci Eng. 2001;29:115–27.CrossRefGoogle Scholar
  52. 52.
    Liu Changling, Ye Yuguang, Ren Hongbo, et al. Experimental techniques of directly measuring the gas storage capacity in methane hydrate. Nat Gas Ind. 2005;25(3):44–7.Google Scholar
  53. 53.
    Zhu Youhai, Zhang Yongqin, Wen Huaijun, et al. Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China. Acta Geol Sin. 2009;83(11):1762–71.Google Scholar
  54. 54.
    Wang Hongzhi, Zhang Xuelong, Wu Jie. Nuclear magnetic resonance imaging experiment. Beijing: Science Press; 2008.Google Scholar
  55. 55.
    Moudrakovski IL, Ratcliffe CI, McLaurin GE, et al. Hydrate layers on ice particles and superheated ice: a 1H NMR microimaging study. J Phys Chem A. 1999;103(26):4969–72.CrossRefGoogle Scholar
  56. 56.
    Kvamme B, Graue A, Aspenes E, et al. Towards understanding the kinetics of hydrate formation: phase field theory of hydrate nucleation and magnetic resonance imaging. Phys Chem. 2004;6:2327–34.CrossRefGoogle Scholar
  57. 57.
    Baldwinl BA, Moradi AA, Stevens JC. Monitoring hydrate formation and dissociation in sandstone and bulk with magnetic resonance imaging. Magn Reson Imaging. 2003;21:1061–9.CrossRefGoogle Scholar
  58. 58.
    Kvamme B, Graue A, Buanes T, et al. Storage of CO2 in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers. Int J Greenh Gas Control. 2007;1:236–46.CrossRefGoogle Scholar
  59. 59.
    Ersland G, Husebø J, Graue A, et al. Proceedings of the 6th International Conference on Gas Hydrates, Vancouver, British Columbia, Canada; 2008.Google Scholar
  60. 60.
    Stevens JC, Howard JJ, Baldwin BA, et al. Experimental hydrate formation and gas production scenarios based on CO2 sequestration. In: Proceedings of the 6th International Conference on Gas Hydrates, Vancouver, British Columbia, Canada; 2008.Google Scholar
  61. 61.
    Ersland G, Husebø J, Graue A, et al. Transport and storage of CO2 in natural gas hydrate reservoirs. Energy Procedia. 2009;1:3477–84.CrossRefGoogle Scholar
  62. 62.
    Husebø J, Ersland G, Kvamme B, et al. Experimental investigation of methane release from hydrate formation in sandstone through both hydrate dissociation and CO2 sequestration. In: Proceedings of the 6th International Conference on Gas Hydrates, Vancouver, British Columbia, Canada; 2008.Google Scholar
  63. 63.
    Yu Liu, Yongchen Song, Yongjun Chen, et al. The detection of tetrahydrofuran hydrate formation and saturation using magnetic resonance imaging technique. J Nat Gas Chem. 2010;19(3):224–8.CrossRefGoogle Scholar
  64. 64.
    Song Yongchen, Yang Mingjun, Yu Liu. Progress on the experimental detection technology of gas hydrate formation and decomposition. Nat Gas Ind. 2008;28(8):111–3.Google Scholar
  65. 65.
    Meng Qingguo, Liu Changling, Ye Yuguang. In situ monitoring ice melting and tetrahydrofuran hydrates dissociation with magnetic resonance imaging. J Basic Sci Eng. 2012;20(1):11–20.Google Scholar
  66. 66.
    Tulk CA, Klug DD, Ripmeester JA. Raman spectroscopic studies of THF clathrate hydrate. J Phys Chem A. 1998;102(45):8734–9.CrossRefGoogle Scholar
  67. 67.
    Ikeda-Fukazawa T, Kawamura K. Molecular-dynamics studies of surface of ice Ih. J Chem Phys. 2004;120(3):1395–401.CrossRefGoogle Scholar
  68. 68.
    Qin Yan, Li Weizhong. Numerical simulation on heat transfer in ice melting by using moving mesh method. J Therm Sci Technol. 2005;4(3):213–8.Google Scholar
  69. 69.
    Gao Shuqiang, Waylon House, Chapman Walter G. NMR/MRI study of clathrate hydrate mechanisms. J Phys Chem B. 2005;109(41):19090–3.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Qingguo Meng
    • 1
  • Changling Liu
    • 1
  • Qiang Chen
    • 1
  • Yuguang Ye
    • 1
  1. 1.Gas Hydrate LaboratoryQingdao Institute of Marine Geology, China Geological SurveyQingdaoChina

Personalised recommendations