Understanding Business Process Models: The Costs and Benefits of Structuredness

  • Marlon Dumas
  • Marcello La Rosa
  • Jan Mendling
  • Raul Mäesalu
  • Hajo A. Reijers
  • Nataliia Semenenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7328)


Previous research has put forward various metrics of business process models that are correlated with understandability. Two such metrics are size and degree of (block-)structuredness. What has not been sufficiently appreciated at this point is that these desirable properties may be at odds with one another. This paper presents the results of a two-pronged study aimed at exploring the trade-off between size and structuredness of process models. The first prong of the study is a comparative analysis of the complexity of a set of unstructured process models from industrial practice and of their corresponding structured versions. The second prong is an experiment wherein a cohort of students was exposed to semantically equivalent unstructured and structured process models. The key finding is that structuredness is not an absolute desideratum vis-a-vis for process model understandability. Instead, subtle trade-offs between structuredness and other model properties are at play.


structured process model process model complexity process model understandability 


  1. 1.
    Agarwal, R., De, P., Sinha, A.P.: Comprehending object and process models: An empirical study. IEEE Transactions on Software Engineering 25(4), 541–556 (1999)CrossRefGoogle Scholar
  2. 2.
    Rolón Aguilar, E., García, F., Ruiz, F., Piattini, M.: An exploratory experiment to validate measures for business process models. In: First International Conference on Research Challenges in Information Science, RCIS (2007)Google Scholar
  3. 3.
    Canfora, G., García, F., Piattini, M., Ruiz, F., Visaggio, C.A.: A family of experiments to validate metrics for software process models. Journal of Systems and Software 77(2), 113–129 (2005)CrossRefGoogle Scholar
  4. 4.
    Cardoso, J.: Evaluating workflows and web process complexity. In: Fischer, L. (ed.) Workflow Handbook 2005, pp. 284–290. Future Strategies, Inc., Lighthouse Point (2005)Google Scholar
  5. 5.
    Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Transaction on Software Engineering 20(6), 476–493 (1994)CrossRefGoogle Scholar
  6. 6.
    Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Instantaneous Soundness Checking of Industrial Business Process Models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 278–293. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: A ’cognitive dimensions’ framework. J. Vis. Lang. Comput. 7(2), 131–174 (1996)CrossRefGoogle Scholar
  8. 8.
    Gruhn, V., Laue, R.: Good and bad excuses for unstructured business process models. In: Proc. of EuroPLoP, pp. 279–292. UVK - Universitaetsverlag Konstanz (2008)Google Scholar
  9. 9.
    Hauser, R., Friess, M., Kuster, J.M., Vanhatalo, J.: An Incremental Approach to the Analysis and Transformation of Workflows Using Region Trees. IEEE Transactions on Systems, Man, and Cybernetics, Part C 38(3), 347–359 (2008)CrossRefGoogle Scholar
  10. 10.
    Hauser, R., Koehler, J.: Compiling Process Graphs into Executable Code. In: Karsai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 317–336. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On Structured Workflow Modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–445. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Koehler, J., Hauser, R.: Untangling Unstructured Cyclic Flows – A Solution Based on Continuations. In: Meersman, R. (ed.) OTM 2004. LNCS, vol. 3290, pp. 121–138. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Laue, R., Mendling, J.: Structuredness and its significance for correctness of process models. Inf. Syst. E-Business Management 8(3), 287–307 (2010)CrossRefGoogle Scholar
  14. 14.
    Lee, G.S., Yoon, J.-M.: An empirical study on the complexity metrics of petri nets. Microelectronics and Reliability 32(3), 323–329 (1992)CrossRefGoogle Scholar
  15. 15.
    Liu, R., Kumar, A.: An Analysis and Taxonomy of Unstructured Workflows. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 268–284. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Mäesalu, R.: Complexity and Understandability Comparison between Unstructured and Structured Business Process Models. Master’s thesis, University of Tartu (June 2011),
  17. 17.
    McCabe, T.J.: A complexity measure. IEEE Transaction on Software Engineering 2(4), 308–320 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Mendling, J., Lassen, K.B., Zdun, U.: On the transformation of control flow between block-oriented and graph-oriented process modelling languages. International Journal of Business Process Integration and Management 3(2), 96–108 (2008)CrossRefGoogle Scholar
  19. 19.
    Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven Process Modeling Guidelines (7PMG). Information and Software Technology 52(2), 127–136 (2010)CrossRefGoogle Scholar
  20. 20.
    Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and Guidelines for Correctness. LNBIP, vol. 6. Springer, Heidelberg (2008)Google Scholar
  21. 21.
    Mendling, J., Reijers, H.A., Recker, J.: Activity labeling in process modeling: Empirical insights and recommendations. Inf. Syst. 35(4), 467–482 (2010)CrossRefGoogle Scholar
  22. 22.
    Nissen, M.E.: Redesigning reengineering through measurement-driven inference. MIS Quarterly 22(4), 509–534 (1998)CrossRefGoogle Scholar
  23. 23.
    Oulsnam, G.: Unravelling unstructured programs. Comput. J. 25(3), 379–387 (1982)zbMATHGoogle Scholar
  24. 24.
    Petre, M.: Why looking isn’t always seeing: Readership skills and graphical programming. Commun. ACM 38(6), 33–44 (1995)CrossRefGoogle Scholar
  25. 25.
    Polyvyanyy, A., García-Bañuelos, L., Dumas, M.: Structuring Acyclic Process Models. Information Systems (to appear, 2012)Google Scholar
  26. 26.
    Reijers, H.A., Mendling, J.: A Study into the Factors that Influence the Understandability of Business Process Models. IEEE Transactions on Systems Man and Cybernetics, Part A (2010)Google Scholar
  27. 27.
    Reijers, H.A., Freytag, T., Mendling, J., Eckleder, A.: Syntax highlighting in business process models. Decision Support Systems 51(3), 339–349 (2011)CrossRefGoogle Scholar
  28. 28.
    Reijers, H.A., Mendling, J.: A study into the factors that influence the understandability of business process models. IEEE Transactions on Systems, Man, and Cybernetics, Part A 41(3), 449–462 (2011)CrossRefGoogle Scholar
  29. 29.
    Rieger, M., Ducasse, S., Lanza, M.: Insights into system-wide code duplication. In: Proceedings of 11th Working Conference on Reverse Engineering, pp. 100–109. IEEE (2004)Google Scholar
  30. 30.
    Sánchez-González, L., García, F., Mendling, J., Ruiz, F.: Quality Assessment of Business Process Models Based on Thresholds. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010, Part I. LNCS, vol. 6426, pp. 78–95. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Vanderfeesten, I., Reijers, H.A., Mendling, J., van der Aalst, W.M.P., Cardoso, J.: On a Quest for Good Process Models: The Cross-Connectivity Metric. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 480–494. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow Analysis for Business Process Models Through SESE Decomposition. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Vanhatalo, J., Volzer, J., Kohler, J.: The Refined Process Structure Tree. DKE 68(9), 793–818 (2009)CrossRefGoogle Scholar
  34. 34.
    Wohlin, C.: Experimentation in software engineering: an introduction, vol. 6. Springer (2000)Google Scholar
  35. 35.
    Zhang, F., D’Hollander, E.H.: Using Hammock Graphs to Structure Programs. IEEE Transactions on Software Engineering 30(4), 231–245 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marlon Dumas
    • 1
  • Marcello La Rosa
    • 2
    • 3
  • Jan Mendling
    • 4
  • Raul Mäesalu
    • 1
  • Hajo A. Reijers
    • 5
  • Nataliia Semenenko
    • 1
  1. 1.University of TartuEstonia
  2. 2.Queensland University of TechnologyAustralia
  3. 3.NICTA Queensland Research Lab.Australia
  4. 4.Vienna University of Business and EconomicsAustria
  5. 5.Eindhoven University of TechnologyThe Netherlands

Personalised recommendations