Advertisement

On Analyzing Process Compliance in Skin Cancer Treatment: An Experience Report from the Evidence-Based Medical Compliance Cluster (EBMC2)

  • Michael Binder
  • Wolfgang Dorda
  • Georg Duftschmid
  • Reinhold Dunkl
  • Karl Anton Fröschl
  • Walter Gall
  • Wilfried Grossmann
  • Kaan Harmankaya
  • Milan Hronsky
  • Stefanie Rinderle-Ma
  • Christoph Rinner
  • Stefanie Weber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7328)

Abstract

Process mining has proven itself as a promising analysis technique for processes in the health care domain. The goal of the EBMC2 project is to analyze skin cancer treatment processes regarding their compliance with relevant guidelines. For this, first of all, the actual treatment processes have to be discovered from the available data sources. In general, the L* life cycle model has been suggested as structured methodology for process mining projects. In this experience paper, we describe the challenges and lessons learned when realizing the L* life cycle model in the EBMC2 context. Specifically, we provide and discuss different approaches to empower data of low maturity levels, i.e., data that is not already available in temporally ordered event logs, including a prototype for structured data acquisition. Further, first results on how process mining techniques can be utilized for data screening are presented.

Keywords

Data Quality Healthcare Processes Process Modeling Process Mining 

References

  1. 1.
    van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  2. 2.
    van der Aalst, W., et al.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Balch, C., et al.: Final version of 2009 ajcc melanoma staging and classification. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 27(36), 199–206 (2009)CrossRefGoogle Scholar
  4. 4.
    Bundesministerium für Gesundheit, Leistungsorientierte Krankenanstaltenfinanzierung - L K F - Medizinische Dokumentation, http://www.bmg.gv.at/cms/home/attachments/0/4/1/CH1166/CMS1128332936305/medizinische_dokumentation_2012.pdf (accessed November 20, 2011)
  5. 5.
    Dunkl, R., Fröschl, K.A., Grossmann, W., Rinderle-Ma, S.: Assessing Medical Treatment Compliance Based on Formal Process Modeling. In: Holzinger, A., Simonic, K.-M. (eds.) USAB 2011. LNCS, vol. 7058, pp. 533–546. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Džeroski, S.: Towards a General Framework for Data Mining. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259–300. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Everitt, B., Hothorn, T.: A Handbook of Statistical Analyses Using R. Chapman & Hall-CRC Press, Boca Raton (2006)CrossRefGoogle Scholar
  8. 8.
    Fitzmaurice, G., et al.: Longitudinal Data Analysis (Chapman & Hall/CRC Handbooks of Modern Statistical Methods). Chapman & Hall-CRC Press, Boca Raton (2009)Google Scholar
  9. 9.
    Fox, J., Black, E., Chronakis, I., Dunlop, R., Petkar, V., South, M., Thomson, R.: From guidelines to careflows: Modelling and supporting complex clinical processes. In: Computer-based Medical Guidelines and Protocols: a Primer and Current Trends, pp. 44–61. IOS Press, Netherlands (2008)Google Scholar
  10. 10.
    Garbe, C., Peris, K., Hauschild, A., Saiag, P., Middleton, M., Spatz, A., Grob, J., Malvehy, J., Newton-Bishop, J., Stratigos, A., Pehamberger, H., Eggermont, A.: Diagnosis and treatment of melanoma: European consensus-based interdisciplinary guideline. European Journal of Cancer 46(2), 270–283 (2010)CrossRefGoogle Scholar
  11. 11.
    Guyatt, G., Oxman, A., Schünemann, H., Tugwell, P., Knottnerus, A.: Grade guidelines: A new series of articles in the journal of clinical epidemiology. Journal of Clinical Epidemiology 64(4), 380–382 (2011)CrossRefGoogle Scholar
  12. 12.
    Health Level Seven International, http://www.hl7.org/ (accessed November 29, 2011)
  13. 13.
    Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Warehouses. Springer, Heidelberg (2010)Google Scholar
  14. 14.
    Mans, R.: Workflow Support for the Healthcare Domain. Proefschriftmaken.nl, Netherlands (2011)Google Scholar
  15. 15.
    Oracle Corporation, http://www.mysql.com/ (accessed November 28, 2011)
  16. 16.
    Potix Corporation, http://www.zkoss.org/ (accessed November 28, 2011)
  17. 17.
    Rozinat, A., van der Aalst, W.M.P.: Decision Mining in ProM. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    The International Health Terminology Standards Development Organisation, http://www.ihtsdo.org/ (accessed November 29, 2011)
  19. 19.
    The openEHR Foundation, http://www.openehr.org/ (accessed November 28, 2011)

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Binder
    • 1
  • Wolfgang Dorda
    • 2
  • Georg Duftschmid
    • 2
  • Reinhold Dunkl
    • 3
  • Karl Anton Fröschl
    • 3
  • Walter Gall
    • 2
  • Wilfried Grossmann
    • 3
  • Kaan Harmankaya
    • 1
  • Milan Hronsky
    • 2
  • Stefanie Rinderle-Ma
    • 3
  • Christoph Rinner
    • 2
  • Stefanie Weber
    • 1
  1. 1.Department of DermatologyMedical University of ViennaAustria
  2. 2.Center for Medical Statistics, Informatics and Intelligent SystemsMedical University of ViennaAustria
  3. 3.Faculty of Computer ScienceUniversity of ViennaAustria

Personalised recommendations