Efficient Discovery of Understandable Declarative Process Models from Event Logs

  • Fabrizio M. Maggi
  • R. P. Jagadeesh Chandra Bose
  • Wil M. P. van der Aalst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7328)

Abstract

Process mining techniques often reveal that real-life processes are more variable than anticipated. Although declarative process models are more suitable for less structured processes, most discovery techniques generate conventional procedural models. In this paper, we focus on discovering Declare models based on event logs. A Declare model is composed of temporal constraints. Despite the suitability of declarative process models for less structured processes, their discovery is far from trivial. Even for smaller processes there are many potential constraints. Moreover, there may be many constraints that are trivially true and that do not characterize the process well. Naively checking all possible constraints is computationally intractable and may lead to models with an excessive number of constraints. Therefore, we have developed an Apriori algorithm to reduce the search space. Moreover, we use new metrics to prune the model. As a result, we can quickly generate understandable Declare models for real-life event logs.

Keywords

process mining business process management declarative process models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. Knowledge and Data Engineering, 1128–1142 (2004)Google Scholar
  2. 2.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  3. 3.
    van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process Mining and Verification of Properties: An Approach Based on Temporal Logic. In: Meersman, R., Tari, Z. (eds.) CoopIS/DOA/ODBASE 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative Workflows: Balancing Between Flexibility and Support. Computer Science - R&D, 99–113 (2009)Google Scholar
  5. 5.
    van der Aalst, W.M.P., Reijers, H., Weijters, A., van Dongen, B., de Medeiros, A.A., Song, M., Verbeek, H.: Business Process Mining: An Industrial Application. Information Systems, 713–732 (2007)Google Scholar
  6. 6.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: VLDB 1994, pp. 487–499 (1994)Google Scholar
  8. 8.
    Beer, I., Eisner, C.: Efficient detection of vacuity in temporal model checking. In: Formal Methods in System Design, pp. 200–201 (2001)Google Scholar
  9. 9.
    Brin, S., Motwani, R., Silverstein, C.: Beyond Market Baskets: Generalizing Association Rules to Correlations. In: ACM SIGMOD 1997, pp. 265–276 (1997)Google Scholar
  10. 10.
    Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based data. ACM Trans. on Software Engineering and Methodology, 215–249 (1998)Google Scholar
  11. 11.
    Damaggio, E., Deutsch, A., Hull, R., Vianu, V.: Automatic Verification of Data-Centric Business Processes. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 3–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Datta, A.: Automating the Discovery of As-Is Business Process Models: Probabilistic and Algorithmic Approaches. Info. Systems Research, 275–301 (1998)Google Scholar
  13. 13.
    Declare (2008), http://declare.sf.net
  14. 14.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Kupferman, O., Vardi, M.Y.: Vacuity Detection in Temporal Model Checking. International Journal on Software Tools for Technology Transfer, 224–233 (2003)Google Scholar
  16. 16.
    Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing Declarative Logic-Based Models from Labeled Traces. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: CIDM (2011)Google Scholar
  18. 18.
    de Medeiros, A.A., Weijters, A., van de Aalst, W.M.P.: Genetic Process Mining: An Experimental Evaluation. Data Mining and Knowledge Discovery, 245–304 (2007)Google Scholar
  19. 19.
    Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Controls to Users. Ph.D. thesis, Beta Research School for Operations Management and Logistics, Eindhoven (2008)Google Scholar
  20. 20.
    Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Support for Loosely-Structured Processes. In: EDOC 2007, pp. 287–298 (2007)Google Scholar
  21. 21.
    Schunselaar, D.M.M., Maggi, F.M., Sidorova, N.: Patterns for a Log-Based Strengthening of Declarative Compliance Models. In: iFM 2012 (to appear, 2012)Google Scholar
  22. 22.
    Wu, X., Zhang, C., Zhang, S.: Efficient Mining of Both Positive and Negative Association Rules. ACM Transactions on Information Systems, 381–405 (2004)Google Scholar
  23. 23.
    Zugal, S., Pinggera, J., Weber, B.: The Impact of Testcases on the Maintainability of Declarative Process Models. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., Schmidt, R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81, pp. 163–177. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fabrizio M. Maggi
    • 1
  • R. P. Jagadeesh Chandra Bose
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Eindhoven University of TechnologyThe Netherlands

Personalised recommendations