Mining Inter-organizational Business Process Models from EDI Messages: A Case Study from the Automotive Sector

  • Robert Engel
  • Wil M. P. van der Aalst
  • Marco Zapletal
  • Christian Pichler
  • Hannes Werthner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7328)


Traditional standards for Electronic Data Interchange (EDI), such as EDIFACT and ANSI X12, have been employed in Business-to-Business (B2B) e-commerce for decades. Due to their wide industry coverage and long-standing establishment, they will presumably continue to play an important role for some time. EDI systems are typically not “process-aware”, i.e., messages are standardized but processes simply “emerge”. However, to improve performance and to enhance the control, it is important to understand and analyze the “real” processes supported by these systems. In the case study presented in this paper we uncover the inter-organizational business processes of an automotive supplier company by analyzing the EDIFACT messages that it receives from its business partners. We start by transforming a set of observed messages to an event log, which requires that the individual messages are correlated to process instances. Thereby, we make use of the specific structure of EDIFACT messages. Then we apply process mining techniques to uncover the inter-organizational business processes. Our results show that inter-organizational business process models can be derived by analyzing EDI messages that are exchanged in a network of organizations.


process mining inter-organizational business processes BPM EDI event correlation 


  1. 1.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Berge, J.: The EDIFACT Standards. Blackwell Publishers, Inc. (1994)Google Scholar
  3. 3.
    Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)CrossRefGoogle Scholar
  4. 4.
    Datta, A.: Automating the Discovery of AS-IS Business Process Models: Probabilistic and Algorithmic Approaches. Information Systems Research 9(3), 275 (1998)CrossRefGoogle Scholar
  5. 5.
    Diniz, P.C., Ferreira, D.R.: Automatic Extraction of Process Control Flow from I/O Operations. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 342–357. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Dustdar, S., Gombotz, R.: Discovering Web Service Workflows Using Web Services Interaction Mining. International Journal of Business Process Integration and Management 1(4), 256–266 (2006)CrossRefGoogle Scholar
  7. 7.
    Emmelhainz, M.A.: EDI: A Total Management Guide, 2nd edn. John Wiley & Sons, Inc., New York (1992)Google Scholar
  8. 8.
    Engel, R., Krathu, W., Zapletal, M., Pichler, C., van der Aalst, W.M.P., Werthner, H.: Process Mining for Electronic Data Interchange. In: Huemer, C., Setzer, T. (eds.) EC-Web 2011. LNBIP, vol. 85, pp. 77–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Ferreira, D.R., Gillblad, D.: Discovering Process Models from Unlabelled Event Logs. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 143–158. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering Expressive Process Models by Clustering Log Traces. IEEE Transactions on Knowledge and Data Engineering 18(8), 1010–1027 (2006)CrossRefGoogle Scholar
  11. 11.
    Hand, D.J., Smyth, P., Mannila, H.: Principles of Data Mining. MIT Press, Cambridge (2001)Google Scholar
  12. 12.
    Hill, N., Ferguson, D.: Electronic Data Interchange: A Definition and Perspective. EDI Forum: The Journal of Electronic Data Interchange 1, 5–12 (1989)Google Scholar
  13. 13.
    Nezhad, H.R.M., Saint-paul, R., Benatallah, B., Casati, F.: Deriving Protocol Models from Imperfect Service Conversation Logs. IEEE Transactions on Knowledge and Data Engineering 20(12), 1683–1698 (2008)CrossRefGoogle Scholar
  14. 14.
    Nezhad, H.R.M., Saint-paul, R., Benatallah, B., Casati, F., Andritsos, P.: Message Correlation for Conversation Reconstruction in Service Interaction Logs. Technical Report DIT-07-010, University of Trento (2007)Google Scholar
  15. 15.
    Nezhad, H.R.M., Saint-paul, R., Casati, F., Benatallah, B.: Event Correlation for Process Discovery from Web Service Interaction Logs. VLDB Journal 20(3), 417–444 (2011)CrossRefGoogle Scholar
  16. 16.
    Nurmilaakso, J.-M.: EDI, XML and e-business frameworks: A survey. Computers in Industry 59(4), 370–379 (2008)CrossRefGoogle Scholar
  17. 17.
    Pauw, W.D., Lei, M., Pring, E., Villard, L., Arnold, M., Morar, J.: Web Services Navigator: Visualizing the Execution of Web Services. IBM Systems Journal 44(4), 821–845 (2005)CrossRefGoogle Scholar
  18. 18.
    Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance Improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  20. 20.
    van der Aalst, W., Dumas, M., Ouyang, A.R.C., Verbeek, H.: Conformance Checking of Service Behavior. ACM Transactions on Internet Technology 8(3), 29–59 (2008)CrossRefGoogle Scholar
  21. 21.
    van der Aalst, W., Reijers, H.A., Weijters, A.M., van Dongen, B., Alves de Medeiros, A., Song, M., Verbeek, H.: Business Process Mining: An Industrial Application. Information Systems 32, 713–732 (2007)CrossRefGoogle Scholar
  22. 22.
    van der Aalst, W., Verbeek, H.: Process Mining in Web Services: The WebSphere Case. IEEE Bulletin of the Technical Committee on Data Engineering 31(3), 45–48 (2008)Google Scholar
  23. 23.
    Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Vollmer, K., Gilpin, M., Stone, J.: B2B Integration Trends: Message Formats. Forrester Research (2007)Google Scholar
  25. 25.
    Weijters, A., van der Aalst, W.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Engel
    • 1
  • Wil M. P. van der Aalst
    • 2
  • Marco Zapletal
    • 1
  • Christian Pichler
    • 1
  • Hannes Werthner
    • 1
  1. 1.Institute of Software Technology and Interactive Systems, Electronic Commerce GroupVienna University of TechnologyAustria
  2. 2.Department of Computer ScienceEindhoven University of TechnologyThe Netherlands

Personalised recommendations