Skip to main content

Poisson Structures: Basic Definitions

  • Chapter
Poisson Structures

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 347))

  • 3285 Accesses

Abstract

In this chapter we give the basic definitions of a Poisson algebra, of a Poisson variety, of a Poisson manifold and of a Poisson morphism. A Poisson algebra is a (typically infinite-dimensional) vector space equipped with a commutative, associative product and a Lie bracket; these two structures are demanded to be compatible. This definition is easily transported to affine varieties, considering as vector space its algebra of regular functions: thus, an affine Poisson variety consists of an affine variety, with a compatible Lie bracket on its algebra of functions. For real or complex manifolds, it is more natural to start out from a bivector field on the manifold and demand that it induces on local functions a Lie algebra structure; the bivector character is tantamount to the compatiblity between the two algebra structures on local functions. We treat the case of affine Poisson varieties and of Poisson manifolds separately; as we will show, Poisson varieties and Poisson manifolds can be treated uniformly up to some point, but quickly the techniques and results diverge, past this point. We prove Weinstein’s splitting theorem, which yields both the local and global structure of a (real or complex) Poisson manifold. At the end of the chapter, we specialize some of the results to the case of Poisson brackets on the algebra of polynomial, smooth or holomorphic functions on a finite-dimensional vector space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P. (2013). Poisson Structures: Basic Definitions. In: Poisson Structures. Grundlehren der mathematischen Wissenschaften, vol 347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31090-4_1

Download citation

Publish with us

Policies and ethics