Homogeneous RF Coil Design Using a GA

  • Karthik Nadig
  • William M. Potter
  • Walter D. Potter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7345)

Abstract

Optimizing the magnetic field homogeneity of single/dual tuned birdcage coils used in Magnetic Resonance Spectroscopy improves measurement accuracy of metabolite concentrations. This work in progress article focuses on the novel domain development of a heuristic technique using nature inspired optimization to find the best possible parameters for a birdcage coil design.

Keywords

Radio Frequency Resonant Mode Coil Design Magnetic Resonance Material Copper Strip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duan, Y., Peterson, B.S., Liu, F., Brown, T.R., Ibrahim, T.S., Kangarlu, A.: Computational and experimental optimization of a double-tuned 1h/31p four-ring birdcage head coil for mrs at 3t. Journal of Magnetic Resonance Imaging 29(1), 13–22 (2009), http://dx.doi.org/10.1002/jmri.21509 CrossRefGoogle Scholar
  2. 2.
    Giovannetti, G., Landini, L., Santarelli, M., Positano, V.: A fast and accurate simulator for the design of birdcage coils in mri. Magnetic Resonance Materials in Physics, Biology and Medicine 15, 36–44 (2002), http://dx.doi.org/10.1007/BF02693842 10.1007/BF02693842CrossRefGoogle Scholar
  3. 3.
    Hugon, C., D’Amico, F., Aubert, G., Sakellariou, D.: Design of arbitrarily homogeneous permanent magnet systems for nmr and mri: Theory and experimental developments of a simple portable magnet. Journal of Magnetic Resonance 205(1), 75–85 (2010), http://www.sciencedirect.com/science/article/pii/S1090780710001059 CrossRefGoogle Scholar
  4. 4.
    Ibrahim, T.S., Tang, L.: Insight into rf power requirements and b1 field homogeneity for human mri via rigorous fdtd approach. Journal of Magnetic Resonance Imaging 25(6), 1235–1247 (2007), http://dx.doi.org/10.1002/jmri.20919 CrossRefGoogle Scholar
  5. 5.
    Jin, J.M.: Electromagnetic Analysis and Design in Magnetic Resonance Imaging. CRC Press (1999) No. ISBN-13: 9780849396939Google Scholar
  6. 6.
    Liu, W., Collins, C.M., Delp, P.J., Smith, M.B.: Effects of end-ring/shield configuration on homogeneity and signal-to-noise ratio in a birdcage-type coil loaded with a human head. Magnetic Resonance in Medicine 51(1), 217–221 (2004), http://dx.doi.org/10.1002/mrm.10683 CrossRefGoogle Scholar
  7. 7.
    Oskooi, A.F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J.D., Johnson, S.G.: MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications 181, 687–702 (2010)MATHCrossRefGoogle Scholar
  8. 8.
    Taflove, A.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 1st edn. Artech House Publishers, Norwood (1995)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Karthik Nadig
    • 1
  • William M. Potter
    • 2
  • Walter D. Potter
    • 3
  1. 1.Artificial IntelligenceThe University of GeorgiaUSA
  2. 2.Physics & AstronomyThe University of GeorgiaUSA
  3. 3.Computer Science & Artificial IntelligenceThe University of GeorgiaUSA

Personalised recommendations