Skip to main content

Pincer Complexes as Catalysts for Amine Borane Dehydrogenation

  • Chapter
  • First Online:
Organometallic Pincer Chemistry

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 40))

Abstract

Amine boranes have received attention as attractive materials for the chemical storage of hydrogen. Thermal dehydrogenation of these materials is possible, but catalyzed dehydrogenation would allow for greater control of the rate and extent of H2 release. Recent work has shown that metal complexes bearing pincer ligands are competent catalysts for amine borane dehydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[NH2BH2]5 :

Pentamer

AB:

Ammonia borane

BN:

Boron–nitrogen

COD:

Cyclooctadiene

DMAB:

Dimethylamine borane

DOE:

Department of Energy

ESI-MS:

Electrospray ionization mass spectroscopy

GPC:

Gel permeation chromatography

iPrPN:

2-(diisopropylphosphino)ethylamine

IR:

Infrared

KIE:

Kinetic isotope effect

KOtBu:

Potassium t-butoxide

MAS:

Magic angle spinning

MeAB:

Methylamine borane

NH2BH2 :

Amino borane

NMR:

Nuclear magnetic resonance

PGM:

Platinum group metal

PNPH :

HN(CH2CH2PiPr2)2

POCOP:

1,3-(OPtBu2)2C6H3

PSiNSiP:

N(SiMe2CH2PPh2)2

STP:

Standard temperature and pressure

tBuPN:

2-(ditertbutylphosphino)ethylamine

THF:

Tetrahydrofuran

wt%:

Weight percent

XRD:

X-ray diffraction

References

  1. REN21 (2010) Renewables 2010 global status report. REN21 Secretariat, Paris

    Google Scholar 

  2. Kerr RA (2007) Science 316:351

    Article  CAS  Google Scholar 

  3. AWEA, “American Wind Energy Association (AWEA) Notes Wind Industry Highlights of 2009,” press release. Washington, DC, 22 Dec 2009

    Google Scholar 

  4. Satayapal S, Petrovic J, Read C, Thomas G, Ordaz G (2007) Catal Today 120:246

    Article  Google Scholar 

  5. Service RF (2009) Science 324:1257

    Article  CAS  Google Scholar 

  6. Program’s Multi-Year Research, Development, and Demonstration Plan (2009). http://www1.eere.energy.gov/hydrogenandfuelcells/storage/storage_challenges.html

  7. Eberle U, Felderhoff M, Schüth F (2009) Angew Chem Int Ed 48:6608

    Article  CAS  Google Scholar 

  8. http://www.bloomberg.com/apps/news?pid=newsarchive&sid=a693eL42oJHo

  9. US Patent 6,534,033, 18 Mar 2003, assigned to Millenium Cell

    Google Scholar 

  10. Megede DZur (2002) J Power Sources 106:35

    Article  Google Scholar 

  11. Stephens FH, Pons V, Baker RT (2007) Dalton Trans 2613

    Google Scholar 

  12. Marder TB (2007) Angew Chem Int Ed 46:8116

    Article  CAS  Google Scholar 

  13. Hu MG, Geanangel RA, Wendlandt WW (1978) Thermochim Acta 23:249

    Article  CAS  Google Scholar 

  14. Jaska CA, Temple K, Lough AJ, Manners I (2001) Chem Commun 11:962

    Article  Google Scholar 

  15. Denney MC, Pons V, Hebden TJ, Heinekey DM, Goldberg KI (2006) J Am Chem Soc 128:12048

    Article  CAS  Google Scholar 

  16. Göttker-Schnetmann I, White P, Brookhart M (2004) J Am Chem Soc 126:1804

    Article  Google Scholar 

  17. Blaquiere N, Diallo-Garcia S, Gorelsky SI, Black DA, Fagnou K (2008) J Am Chem Soc 130:14034

    Article  CAS  Google Scholar 

  18. Käß M, Friedrich A, Drees M, Scheinder S (2009) Angew Chem Int Ed 48:905

    Article  Google Scholar 

  19. Hamilton CW, Baker RT, Staubitz A, Manners I (2008) Chem Soc Rev 38:279

    Article  Google Scholar 

  20. Hebden TJ, St. John AJ, Gusev DG, Kaminsky W, Goldberg KI, Heinekey DM (2011) Angew Chem Int Ed 50:1873

    Article  CAS  Google Scholar 

  21. Smythe NC, Gordon JC (2010) Eur J Inorg Chem 509

    Google Scholar 

  22. Jaska CA, Temple K, Lough AJ, Manners I (2003) J Am Chem Soc 125:9424

    Article  CAS  Google Scholar 

  23. Jaska CA, Manners I (2004) J Am Chem Soc 126:9776

    Article  CAS  Google Scholar 

  24. Böddeker KW, Shore SG, Bunting RK (1966) J Am Chem Soc 126:1804

    Google Scholar 

  25. Hebden TJ, Goldberg KI, Heinekey DM, Zhang X, Emge TJ, Goldman AS, Krogh-Jespersen K (2010) Inorg Chem 49:1733

    Article  CAS  Google Scholar 

  26. Hebden TJ, Denney MC, Pons V, Piccoli PMB, Koetzle TF, Schultz AJ, Kaminsky W, Goldberg KI, Heinekey DM (2008) J Am Chem Soc 130:10812

    Article  CAS  Google Scholar 

  27. Zhu K, Achord PD, Zhang X, Krogh-Jespersen K, Goldman AS (2004) J Am Chem Soc 126:10797

    Google Scholar 

  28. Paul A, Musgrave CB (2007) Angew Chem Int Ed 46:8153

    Article  CAS  Google Scholar 

  29. Pons V, Baker RT, Szymczak NK, Heldebrant DJ, Linehan JC, Matus MH, Grant DJ, Dixon DA (2008) Chem Commun 48:6597–6599

    Article  Google Scholar 

  30. Dietrich BL, Goldberg KI, Heinekey DM, Autrey T, Linehan JC (2008) Inorg Chem 47:8583

    Article  CAS  Google Scholar 

  31. Staubitz A, Soto AP, Manners I (2008) Angew Chem Int Ed 47:6212

    Article  CAS  Google Scholar 

  32. Staubitz A, Sloan ME, Robertson APM, Friedrich A, Schneider S, Gates PJ, auf der Günne JS, Manners I (2010) J Am Chem Soc 132:13332

    Google Scholar 

  33. Sutton AD, Burrell AK, Dixon DA, Garner EB III, Gordon JC, Nakagawa T, Ott KC, Robinson JP, Vasiliu M (2011) Science 331:1426

    Article  CAS  Google Scholar 

  34. Noyori R, Hashiguchi S (1997) Acc Chem Res 30:97

    Article  CAS  Google Scholar 

  35. Clapham SE, Hadzovic A, Morris RH (2004) Coord Chem Rev 248:2201

    Article  CAS  Google Scholar 

  36. Noyori R, Okhuma T (2001) Angew Chem Int Ed 40:40

    Article  CAS  Google Scholar 

  37. Ikariya T, Blacker AJ (2007) Acc Chem Res 40:1300

    Article  CAS  Google Scholar 

  38. Keaton RJ, Blacquiere JM, Baker RT (2007) J Am Chem Soc 129:1844

    Article  CAS  Google Scholar 

  39. Friedrich A, Drees M, Schneider S (2009) Chem Eur J 15:10339

    Article  CAS  Google Scholar 

  40. Jaska CA, Temple K, Lough AJ, Manners I (2001) Chem Commun 962

    Google Scholar 

  41. Fryzuk MD, Leznoff DB, Thompson RC, Rettig SJ (1998) J Am Chem Soc 120:10126

    Article  CAS  Google Scholar 

  42. Yang X, Hall MB (2008) J Am Chem Soc 130:1798

    Article  CAS  Google Scholar 

  43. Yang X, Hall MB (2009) J Organomet Chem 694:2831

    Article  CAS  Google Scholar 

  44. Conley BL, Williams TJ (2010) Chem Commun 46:4815

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Michael Heinekey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

St. John, A., Goldberg, K.I., Heinekey, D.M. (2013). Pincer Complexes as Catalysts for Amine Borane Dehydrogenation. In: van Koten, G., Milstein, D. (eds) Organometallic Pincer Chemistry. Topics in Organometallic Chemistry, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31081-2_9

Download citation

Publish with us

Policies and ethics