Advertisement

Clustering for the Localization of Degraded Urban Areas

  • Silvestro Montrone
  • Paola Perchinunno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7334)

Abstract

The presence of a varied range of definitions on the theme of poverty underlines the necessity of no longer relying on a single indicator yet rather on a group of indicators, useful in the definition of living conditions of various subjects. The starting point for this approach derives from the necessity of identifying, on the basis of statistical data, geographical zones of urban poverty, in the specific case of the area of the city of Bari. Rapid developments in the availability and access to spatially referenced information in a variety of areas have induced the need for better analysis techniques in order to understand the various phenomena. In particular, spatial clustering algorithms, which groups similar spatial objects into classes, can be used for the identification of areas sharing common characteristics. The aim of this paper is to present a density based algorithm for the discovery of clusters of units in large spatial data sets. These approaches have been improved using the SaTScan and DBSCAN or Seg-DBSCAN methodology. Further developments concern the application of a DENCLUE "weighed", obtained using the intensity of a phenomenon instead of the density kernel.

Keywords

urban poverty SatScan Seg-DBSCAN fuzzy logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Whelan, C.T.: The role of income, life-style deprivation and financial strain in mediating the impact of unemployment on psychological distress. Working Paper 20. Economic and Social Research Institute, Dublin (1991)Google Scholar
  2. 2.
    Montrone, S., Campobasso, F., Perchinunno, P., Fanizzi, A.: An Analysis of Poverty in Italy through a Fuzzy Regression Model. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part I. LNCS, vol. 6782, pp. 342–355. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Cheli, B., Lemmi, A.: A “Totally” Fuzzy and Relative Approach to the Multidimensional Analysis of Poverty. Economic Notes 24(1), 115–134 (1995)Google Scholar
  4. 4.
    Kulldorff, M.: SaTScanTM User Guide (August 26, 2006), http://www.satscan.org/
  5. 5.
    Ester, M., Kriegel, H.P., Sander, J., Xiaowei, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proceeding of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 94–99 (1996)Google Scholar
  6. 6.
    Takahashi, K., Tango, T.: A flexibly shaped spatial scan statistic for detecting clusters. International Journal of Health Geographics 4, 11–13 (2005)CrossRefGoogle Scholar
  7. 7.
    Patil, G.P., Taillie, C.: Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environmental and Ecological Statistics 11, 183–197 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Aldstadt, J., Getis, A.: Using AMOEBA to create spatial weights matrix and identify spatial clusters. Geographical Analysis 38, 327–343 (2006)CrossRefGoogle Scholar
  9. 9.
    Bilancia, M., Montrone, S., Perchinunno, P.: A Model-Based Scan Statistics for Detecting Geographical Clustering of Disease. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009, Part I. LNCS, vol. 5592, pp. 353–368. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Waller, L.A., Gotway, C.A.: Applied Spatial Statistics for Public Health Data. John Wiley & Sons, New York (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Montrone, S., Perchinunno, P., Torre, C.M.: Analysis of Positional Aspects in the Variation of Real Estate Values in an Italian Southern Metropolitan Area. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6016, pp. 17–31. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: Ordering points to identify the clustering structure. In: Proceedings SIGMOD 1999, pp. 49–60. ACM Press (1999)Google Scholar
  13. 13.
    Hinneburg, A., Keim, D.: An efficient approach to clustering in large multimedia databases with noise. In: Proceedings KDD 1998, pp. 58–65. AAAI Press (1998)Google Scholar
  14. 14.
    Hinneburg, A., Keim, D.: A general approach to clustering in large databases with noise. Knowledge and Information Systems, KAIS 5(4), 387–415 (2003)CrossRefGoogle Scholar
  15. 15.
    Cerioli, A., Zani, S.: A Fuzzy Approach to the Measurement of Poverty. In: Dugum, C., Zenga, M. (eds.) Income and Wealth Distribution, Inequality and Poverty, Springer, Berlin (1990)Google Scholar
  16. 16.
    Bilancia, M., Campobasso, F., Fanizzi, A.: The pricing of risky security in a Fuzzy Least Square Regression Model. In: Locarek-junge, Weishs (eds.) Studies in Classification, Data Analysis and Knowledge Organization – Classification as a Tool for Research, pp. 639–646. Springer, Heidelberg (2010)Google Scholar
  17. 17.
    Montrone, S., Bilancia, M., Perchinunno, P., Torre, C.M.: Economic Evaluation and Statistical Methods for Detecting Hot Spots of Social and Housing Difficulties in Urban Policies. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009, Part I. LNCS, vol. 5592, pp. 253–268. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Silvestro Montrone
    • 1
  • Paola Perchinunno
    • 1
  1. 1.Department of Statistical ScienceUniversity of BariBariItaly

Personalised recommendations