This paper describes an optimized didactic environment to support and improve learning achievements for conceptual modeling. In particular, it describes computer-aided techniques to address various learning challenges observed in the teaching process such as: hybrid background of students, enrollment of a large number of students, the complexity of industrial tools and difficulties in abstract thinking. The didactic environment has been developed and subsequently optimized in the context of the course Architecture and Modeling of Management Information Systems. It includes 1) diagnostic testing with automated feedback 2) an adapted modeling tool 3) an MDA based simulation feature. The didactic tools were evaluated positively by the students and a positive impact was observed on the student’s capabilities to construct object-oriented conceptual models.


teaching business domain modeling conceptual model enterprise modeling computer aided modeling modeling tool automated consistency control managing knowledge diversity automated feedback model driven architecture simulation prototyping executable models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Snoeck, M., Haesen, R., Buelens, H., De Backer, M., Monsieur, G.: Computer Aided Modelling Exercises. Journal Informatics in Education 6(1), 231–248 (2007)Google Scholar
  2. 2.
    Siau, K., Loo, P.-P.: Identifying difficulties in learning UML. Information Systems Management 23(3), 43–51 (2006)CrossRefGoogle Scholar
  3. 3.
    Moisan, S., Rigault, J.-P.: Teaching Object-Oriented Modeling and UML to Various Audiences. In: Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 40–54. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Erickson, J., Siau, K.: Can UML Be Simplified? Practitioner Use of UML in Separate Domains. In: Proceedings EMMSAD 2007, Trondheim, Norway, pp. 87–96 (2007)Google Scholar
  5. 5.
    Wang, S.: Teaching the object-oriented approach for Business Information Systems Analysis and Design. Journal of Informatics Education and Research 4(1) (2002)Google Scholar
  6. 6.
    Secundo, G., Margherita, A., Passiante, G.: Hybrid Knowledge, Process and Technology: A Way to Managing Learners’ Diversity, Research, Reflections and Innovations in Integrating ICT in Education. FORMATEX, Badajoz (2009)Google Scholar
  7. 7.
    Hadjerrouit, S.: Object-Oriented Software Development Education: a Constructivist Framework. Informatics in Education 4(2), 167–192 (2005)Google Scholar
  8. 8.
    Nicol, D.J., Macfarlane-Dick, D.: Formative assessment and self-regulated learning: A model and seven principles of good feedback practice. Studies in Higher Education 31(2), 199–218 (2006)CrossRefGoogle Scholar
  9. 9.
    Buckl, S., Matthes, F., Schweda, C.M.: A Meta-language for EA Information Modeling – State-of-the-Art and Requirements Elicitation. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Ukor, R. (eds.) BPMDS 2010 and EMMSAD 2010. LNBIP, vol. 50, pp. 169–181. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Gustas, R.: Conceptual Modeling and Integration of Static and Dynamic Aspects of Service Architectures. In: Sicilia, M.-A., Kop, C., Sartori, F. (eds.) ONTOSE 2010. LNBIP, vol. 62, pp. 17–32. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Snoeck, M., Dedene, G.: Existence dependency: the key to semantic integrity between structural and behavioural aspects of object types. IEEE Trans. Software Eng. 24(4), 233–251 (1998)CrossRefGoogle Scholar
  12. 12.
    Martin, J.: Strategic Data Planning Methods. Prentice-Hall, Inc., Englewood Cliffs (1982)Google Scholar
  13. 13.
    Snoeck, M., Michiels, C., Dedene, G.: Consistency by Construction: The Case of MERODE. In: Jeusfeld, M.A., Pastor, Ó. (eds.) ER Workshops 2003. LNCS, vol. 2814, pp. 105–117. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Haesen, R., Snoeck, M.: Implementing Consistency Management Techniques for Conceptual Modeling. Accepted for UML2004: 7th Conference in the UML Series, Lisbon, Portugal, October 10-15 (2004)Google Scholar
  15. 15.
    Merrill, D., Collofello, J.S.: Improving Software Project Management Skills Using a Software Project Simulator. Frontiers in Education Conference (1997)Google Scholar
  16. 16.
    Neu, H., Becker-Kornstaedt, U.: Learning and Understanding a Software Process through Simulation of Its Underlying Model. In: Proceedings of LSO, pp. 81–93 (2002)Google Scholar
  17. 17.
    OMG, Model-Driven Architecture,
  18. 18.
    Zikra, I., Stirna, J., Zdravkovic, J.: Analyzing the Integration between Requirements and Models in Model Driven Development. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., Schmidt, R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81, pp. 342–356. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gayane Sedrakyan
    • 1
  • Monique Snoeck
    • 1
  1. 1.Management Information SystemsKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations