Declarative process models are increasingly used since they fit better with the nature of flexible process-aware information systems and the requirements of the stakeholders involved. When managing business processes, in addition, support for representing time and reasoning about it becomes crucial. Given a declarative process model, users may choose among different ways to execute it, i.e., there exist numerous possible enactment plans, each one presenting specific values for the given objective functions (e.g., overall completion time). This paper suggests a method for generating optimized enactment plans (e.g., plans minimizing overall completion time) from declarative process models with explicit temporal constraints. The latter covers a number of well-known workflow time patterns. The generated plans can be used for different purposes like providing personal schedules to users, facilitating early detection of critical situations, or predicting execution times for process activities. The proposed approach is applied to a range of test models of varying complexity. Although the optimization of process execution is a highly constrained problem, results indicate that our approach produces a satisfactory number of suitable solutions, i.e., solutions optimal in many cases.


declarative models temporal constraints constraint programming planning scheduling clinical guidelines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. In: Proc. Communications of the ACM, pp. 832–843 (1983)Google Scholar
  2. 2.
    Anselma, L., Terenziani, P., Montani, S., Bottrighi, A.: Towards a comprehensive treatment of repetitions, periodicity and temporal constraints in clinical guidelines. Artificial Intelligence In Medicine 38, 171–195 (2006)CrossRefGoogle Scholar
  3. 3.
    Barba, I., Del Valle, C.: A Constraint-based Approach for Planning and Scheduling Repeated Activities. In: Proc. COPLAS, pp. 55–62 (2011)Google Scholar
  4. 4.
    Barba, I., Weber, B., Del Valle, C.: Supporting the Optimized Execution of Business Processes through Recommendations. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 135–140. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Barták, R., Cepek, O.: Incremental propagation rules for a precedence graph with optional activities and time windows. Transactions of the Institute of Measurement and Control 32(1), 73–96 (2010)CrossRefGoogle Scholar
  6. 6.
    Bottrighi, A., Chesani, F., Mello, P., Molino, G., Montali, M., Montani, S., Storari, S., Terenziani, P., Torchio, M.: A Hybrid Approach to Clinical Guideline and to Basic Medical Knowledge Conformance. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds.) AIME 2009. LNCS, vol. 5651, pp. 91–95. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Brucker, P., Knust, S.: Complex Scheduling (GOR-Publications). Springer (2006)Google Scholar
  8. 8.
    Combi, C., Gozzi, M., Juarez, J.M., Oliboni, B.: Conceptual Modeling of Temporal Clinical Workflows. In: Proc. TIME, pp. 70–81 (2007)Google Scholar
  9. 9.
    Duftschmid, G., Miksch, S., Gall, W.: Verification of temporal scheduling constraints in clinical practice guidelines. Artificial Intelligence In Medicine 25(2), 93–121 (2002)CrossRefGoogle Scholar
  10. 10.
    Dynadec. Comet Downloads (2010), (accessed October 3, 2011)
  11. 11.
    Eder, J., Pichler, H., Gruber, W., Ninaus, M.: Personal Schedules for Workflow Systems. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 216–231. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Field, M.J., Lohr, K.N.: Guidelines for clinical practice: from development to use. National Academy Press, Institute of Medicine, Washington, D.C (1992)Google Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)Google Scholar
  14. 14.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufmann, Amsterdam (2004)Google Scholar
  15. 15.
    Grando, M.A., van der Aalst, W.M.P., Mans, R.S.: Reusing a Declarative Specification to Check the Conformance of Different CIGs. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part II. LNBIP, vol. 100, pp. 188–199. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Lanz, A., Weber, B., Reichert, M.: Workflow Time Patterns for Process-Aware Information Systems. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Ukor, R. (eds.) BPMDS 2010 and EMMSAD 2010. LNBIP, vol. 50, pp. 94–107. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Le Pape, C., Couronne, P., Vergamini, D., Gosselin, V.: Time-versus-capacity compromises in project scheduling. In: Proc. PlanSIG, pp. 498–502 (1994)Google Scholar
  18. 18.
    Lenz, R., Reichert, M.: IT support for healthcare processes - premises, challenges, perspectives. Data & Knowledge Engineering 61(1), 39–58 (2007)CrossRefGoogle Scholar
  19. 19.
    Lu, R., Sadiq, S., Governatori, G., Yang, X.: Defining Adaptation Constraints for Business Process Variants. In: Abramowicz, W. (ed.) BIS 2009. LNBIP, vol. 21, pp. 145–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Montali, M.: Specification and Verification of Declarative Open Interaction Models: a Logic-Based Approach. PhD thesis, Department of Electronics, Computer Science and Telecommunications Engineering. University of Bologna (2009)Google Scholar
  21. 21.
    Mulyar, N., Pesic, M., van der Aalst, W.M.P., Peleg, M.: Declarative and Procedural Approaches for Modelling Clinical Guidelines: Addressing Flexibility Issues. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 335–346. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Mulyar, N., van der Aalst, W.M.P., Peleg, M.: A pattern-based analysis of clinical computer-interpretable guideline modelling languages. Journal of the American Medical Informatics Association 14, 781–787 (2007)CrossRefGoogle Scholar
  23. 23.
    Peleg, M., et al.: Comparing computer-interpretable guideline models: A case-study approach. Journal of the American Medical Informatics Association 10(1), 52–68 (2003)CrossRefGoogle Scholar
  24. 24.
    Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to Users. PhD thesis, Technische Universiteit Eindhoven, Eindhoven (2008)Google Scholar
  25. 25.
    Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-Based Workflow Models: Change Made Easy. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Reichert, M.: What BPM Technology Can Do for Healthcare Process Support. In: Peleg, M., Lavrač, N., Combi, C. (eds.) AIME 2011. LNCS, vol. 6747, pp. 2–13. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier (2006)Google Scholar
  28. 28.
    Salido, M.A.: Introduction to planning, scheduling and constraint satisfaction. Journal of Intelligent Manufacturing 21(1), 1–4 (2010)CrossRefGoogle Scholar
  29. 29.
    Shahar, Y.: A framework for knowledge-based temporal abstraction. Artificial Intelligence 90(1/2), 79–133 (1997)CrossRefGoogle Scholar
  30. 30.
    ten Teije, A., Miksch, S., Lucas, P.: Computer-based Medical Guidelines and Protocols: A Primer and Current Trends. IOS Press (2008)Google Scholar
  31. 31.
    van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Information Systems 36(2), 450–475 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Irene Barba
    • 1
  • Andreas Lanz
    • 2
  • Barbara Weber
    • 3
  • Manfred Reichert
    • 2
  • Carmelo Del Valle
    • 1
  1. 1.Departamento de Lenguajes y Sistemas InformáticosUniversity of SevilleSpain
  2. 2.Institute of Databases and Information SystemsUlm UniversityGermany
  3. 3.Department of Computer ScienceUniversity of InnsbruckAustria

Personalised recommendations