Graph-Based Pattern Identification from Architecture Change Logs

  • Aakash Ahmad
  • Pooyan Jamshidi
  • Claus Pahl
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 112)

Abstract

Service-based architectures have become commonplace, creating the need to address their systematic maintenance and evolution. We investigate architecture change representation, primarily focusing on the identification of change patterns that support the potential reuse of common changes in architecture-centric evolution for service software. We propose to exploit architecture change logs - capturing traces of sequential changes - to identify patterns of change that occur over time. The changes in the log are formalised as a typed attributed graph that allows us to apply frequent sub-graph mining approaches to identify potentially reusable, usage-determined change patterns. We propose to foster the reuse of routine evolution tasks to allow an architect to follow a systematic, reuse-centered approach to architectural change execution.

Keywords

Service-driven Architecture Change Patterns Evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a Taxonomy of Software Change. Jrnl of Software Maintenance and Evolution 17, 309–332 (2005)CrossRefGoogle Scholar
  2. 2.
    Ahmad, A., Pahl, C.: Pat-Evol: Pattern-drive Reuse in Architecture-based Evolution for Service Software. ERCIM News 88 (January 2012)Google Scholar
  3. 3.
    Ahmad, A., Pahl, C.: Customisable Transformation-Driven Evolution for Service Architectures. In: Europ. Conf. on Software Maintenance and Reengineering, CSMR 2011. Doct. Consort. (2011)Google Scholar
  4. 4.
    Jiang, C., Coenen, F., Zito, M.: A Survey of Frequent Subgraph Mining Algorithms (2004)Google Scholar
  5. 5.
    Garlan, D., Barnes, J., Schmerl, B., Celiku, O.: Evolution Styles: Foundations and Tool Support for Software Architecture Evolution. In: Proceedings of the Joint Working IEEE/IFIP Conference on Software Architecture (2009)Google Scholar
  6. 6.
    Gruhn, V., Pahl, C., Wever, M.: Data Model Evolution as Basis of Business Process Management. In: 14th International Conference on Object-Oriented and Entity Relationship Modelling O-O ER 1995. LNCS Series. Springer (1995)Google Scholar
  7. 7.
    Javed, M., Abgaz, Y.M., Pahl, C.: A Pattern-Based Framework of Change Operators for Ontology Evolution. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 544–553. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Ehrig, H., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed Graph Transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Pahl, C.: A Formal Composition and Interaction Model for a Web Component Platform. In: ICALP 2002 Workshop on Formal Methods and Component Interaction. ENTCS (2002)Google Scholar
  10. 10.
    Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast Best-Effort Pattern Matching in Large Attributed Graphs. In: 13th ACM International Conference on Knowledge Discovery and Data Mining, KDD 2007, pp. 737–746 (2007)Google Scholar
  11. 11.
    Fahmy, H., Holt, R.C.: Using Graph Rewriting to Specify Software Architectural Transformations. In: 15th Intl. Conf. on Automated Software Engineering (2000)Google Scholar
  12. 12.
    Lewis, G., Smith, D.B., Kontogiannis, K.: A Research Agenda for Service-Oriented Architecture (SOA): Maintenance and Evolution of Service-Oriented Systems. Technical report, Software Engineering Institute (2010)Google Scholar
  13. 13.
    Goaer, O.L., Tamzalit, D., Oussalah, M., Seriai, A.D.: Evolution Shelf: Reusing Evolution Expertise within Component-Based Software Architectures. In: 32nd Annual IEEE Intl. Computer Software and Applications Conference (2008)Google Scholar
  14. 14.
    Ng, R., Lakshmanan, L., Han, J., Pang, A.: Exploratory Mining and Pruning Optimizations of Constrained Associations Rules. In: SIGMOD 1998 Conference (1998)Google Scholar
  15. 15.
    Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Features in Process-Aware Information Systems. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Günther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.: Change Mining in Adaptive Process Management Systems. In: Meersman, R., Tari, Z. (eds.) OTM 2006, Part I. LNCS, vol. 4275, pp. 309–326. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Barrett, R., Patcas, L.M., Murphy, J., Pahl, C.: Model Driven Distribution Pattern Design for Dynamic Web Service Compositions. In: International Conference on Web Engineering, ICWE 2006. ACM Press (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aakash Ahmad
    • 1
  • Pooyan Jamshidi
    • 1
  • Claus Pahl
    • 1
  1. 1.Lero - The Irish Software Engineering Research Center, School of ComputingDublin City UniversityIreland

Personalised recommendations