Advertisement

“Spooky Action at a Distance”

  • Dirk Dubbers
  • Hans-Jürgen Stöckmann
Part of the Graduate Texts in Physics book series (GTP)

Abstract

Since the early days of quantum theory, some disturbing features of quantum physics have lured in the background. Take two particles that have interacted in the past, but meanwhile are so far separated from each other that an interaction is no longer possible. Then the results of measurements on one particle are affected instantaneously by measurements on the other far distant particle. Hidden parameters that might explain this strange entanglement have been ruled out by experiments whose outcomes violate the Bell inequalities, and we conclude that quantum mechanics is a nonlocal theory.

Keywords

Quantum Theory Physical Reality Hide Variable Spin Component Output Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982) MathSciNetADSCrossRefGoogle Scholar
  2. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964) Google Scholar
  3. Bohm, D., Aharonov, Y.: Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 108, 1070–1076 (1957) MathSciNetADSCrossRefGoogle Scholar
  4. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696–702 (1935) ADSzbMATHCrossRefGoogle Scholar
  5. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935) ADSzbMATHCrossRefGoogle Scholar
  6. Freedman, S.J., Clauser, J.F.: Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972) ADSCrossRefGoogle Scholar
  7. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990) MathSciNetADSCrossRefGoogle Scholar
  8. Griffiths, D.J.: Introduction to Quantum Mechanics, 2nd edn. Prentice Hall, Upper Saddle River (2004) Google Scholar
  9. Liboff, R.: Introductory Quantum Mechanics, 4th edn. Addison-Wesley, Boston (2002) Google Scholar
  10. Sakurai, J.J.: Modern Quantum Mechanics. Addison-Wesley, Boston (1985) Google Scholar
  11. Wigner, E.P.: On hidden variables and quantum mechanical probabilities. Am. J. Phys. 38, 1005–1009 (1970) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dirk Dubbers
    • 1
  • Hans-Jürgen Stöckmann
    • 2
  1. 1.Fak. Physik und Astronomie, Physikalisches InstitutUniversität HeidelbergHeidelbergGermany
  2. 2.Fachbereich Physik Philipps-Universität MarburgMarburgGermany

Personalised recommendations