Advertisement

Quantum Informatics

  • Dirk Dubbers
  • Hans-Jürgen Stöckmann
Part of the Graduate Texts in Physics book series (GTP)

Abstract

The field of quantum informatics is in rapid evolution. It has three main objectives: the simulation of physical quantum systems that are inaccessible to conventional computing; quantum computing of hard mathematical problems; long-distance quantum communication. We list basic requirements that quantum hardware has to meet, discuss the difficulties encountered, and give a snapshot on experimental approaches to quantum computing and communication in atomic, solid state, and photonic systems.

Keywords

Quantum Computer Quantum Communication Classical Computer Readout Time Quantum Informatics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Chuang, I.L., Laflamme, R., Shor, P.W., Zurek, W.H.: Quantum computers, factoring and decoherence. Science 270, 1633–1635 (1995) MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031–1042 (2008) ADSCrossRefGoogle Scholar
  3. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. Du, J., Xu, N., Peng, X., Wang, P., Wu, S., Lu, D.: NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. Phys. Rev. Lett. 104, 030502(3) (2010) ADSCrossRefGoogle Scholar
  5. Feynmann, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982) CrossRefGoogle Scholar
  6. Feynmann, R.P.: Quantum mechanical computers. Found. Phys. 16, 507–531 (1986) MathSciNetADSCrossRefGoogle Scholar
  7. Grinolds, M.S., Maletinsky, P., Hong, S., Lukin, M.D., Walsworth, R.L., Yacoby, A.: Quantum control of proximal spins using nanoscale magnetic resonance imaging (2011). arXiv:1103.0546v1
  8. Häffner, H., Roos, C.F., Blatt, R.: Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008) MathSciNetADSCrossRefGoogle Scholar
  9. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473, 194–198 (2011) ADSCrossRefGoogle Scholar
  10. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007) ADSCrossRefGoogle Scholar
  11. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45–53 (2010) ADSCrossRefGoogle Scholar
  12. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) ADSzbMATHCrossRefGoogle Scholar
  13. Neumann, P., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 6, 249–253 (2010) CrossRefGoogle Scholar
  14. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994) ADSCrossRefGoogle Scholar
  15. Timoney, N., Baumgart, I., Johanning, M., Varón, A.F., Plenio, M.B., Retzker, A., Wunderlich, Ch.: Quantum gates and memory using microwave-dressed states. Nature 476, 185–189 (2011) ADSCrossRefGoogle Scholar
  16. Ursin, R., et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007) CrossRefGoogle Scholar
  17. Yuan, Z.-S., Bao, X.-H., Lu, C.-Y., Zhang, J., Peng, C.-Z., Pan, J.-W.: Entangled photons and quantum communication. Phys. Rep. 497, 1–40 (2010) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dirk Dubbers
    • 1
  • Hans-Jürgen Stöckmann
    • 2
  1. 1.Fak. Physik und Astronomie, Physikalisches InstitutUniversität HeidelbergHeidelbergGermany
  2. 2.Fachbereich Physik Philipps-Universität MarburgMarburgGermany

Personalised recommendations