Advertisement

Static Sessional Dataflow

  • Dominic Duggan
  • Jianhua Yao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7313)

Abstract

Sessional dataflow provides a compositional semantics for dataflow computations that can be scheduled at compile-time. The interesting issues arise in enforcing static flow requirements in the composition of actors, ensuring that input and output rates of actors on related channels match, and that cycles in the composition of actors do not introduce deadlock. The former is ensured by flowstates, a form of behavior type that constrains the firing behavior of dataflow actors. The latter is ensured by causalities, a form of constraints that record dependencies in the firing behavior. This article considers an example variant of the sessional dataflow approach for dataflow applications, expressing known ideas from signal processing in a compositional fashion.

Keywords

Open Channel Operational Semantic Output Channel Input Channel Atomic Actor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashcroft, E.A., Wadge, W.W.: Lucid, the dataflow programming language. Academic Press (1985)Google Scholar
  2. 2.
    Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.A.: Cyclo-static data flow. In: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 5, pp. 3255–3258 (May 1995)Google Scholar
  3. 3.
    Boussinot, F., de Simone, R.: The Esterel language. Proc. IEEE 79, 1270–1282 (1991)CrossRefGoogle Scholar
  4. 4.
    Boussinot, F., de Simone, R.: The synchronous data flow programming language Lustre. Proc. IEEE 79, 1305–1320 (1991)CrossRefGoogle Scholar
  5. 5.
    Caspi, P., Pouzet, M.: Synchronous kahn networks. In: International Conference on Functional Programming, ICFP (1996)Google Scholar
  6. 6.
    Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau, F., Pouzet, M.: N-synchronous kahn networks: a relaxed model of synchrony for real-time systems. In: Principles of Programming Languages (POPL), pp. 180–193. ACM Press (2006)Google Scholar
  7. 7.
    DeLine, R., Fähndrich, M.: Typestates for Objects. In: Vetta, A. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: ACM Symposium on Principles of Programming Languages, pp. 435–446. ACM, New York (2011)Google Scholar
  9. 9.
    Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and Session Types: An Overview. In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Edwards, S.A.: Languages for Digital Embedded Systems. Kluwer (2000)Google Scholar
  11. 11.
    Girard, J.-Y.: Linear logic. Theoretical Computer Science (50), 1–102 (1987)Google Scholar
  12. 12.
    Kahn, G.: The semantics of a simple language for parallel programming. In: Information Processing 74: Proceedings of the IFIP Congress, pp. 471–475. North-Holland, Stockholm (1974)Google Scholar
  13. 13.
    Lee, E., Messerschmitt, D.: Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987)CrossRefGoogle Scholar
  14. 14.
    Stork, S., Marques, P., Aldrich, J.: Concurrency by default: using permissions to express dataflow in stateful programs. In: Proceeding of the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages and Applications, OOPSLA 2009, pp. 933–940. ACM, New York (2009)CrossRefGoogle Scholar
  15. 15.
    Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhancing software reliability. IEEE Trans. Softw. Eng. 12, 157–171 (1986)zbMATHGoogle Scholar
  16. 16.
    Thies, W.: Language and Compiler Support for Stream Programs. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (February 2009)Google Scholar
  17. 17.
    Tripakis, S., Bui, D., Rodiers, B., Lee, E.A.: Compositionality in synchronous data flow: Modular code generation from SDF graphs. Technical Report UCB/EECS-2009-143, University of California, Berkeley (October 2009)Google Scholar
  18. 18.
    Wadler, P.: Linear types can change the world? In: Programming Concepts and Methods. North (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dominic Duggan
    • 1
  • Jianhua Yao
    • 1
  1. 1.Department of Computer ScienceStevens Institute of TechnologyHobokenUSA

Personalised recommendations