Space-Filling Curves pp 195-214 | Cite as
Case Study: Cache Efficient Algorithms for Matrix Operations
Chapter
First Online:
Abstract
In Chaps. 10 and 11, we discussed applications of space-filling curves for parallelisation, which were motivated by their locality properties. In the following two chapters, we will discuss further applications, which again exploit the intrinsic locality properties of space-filling curves. As both applications will focus on inherently cache-efficient algorithms, we will start with a short introduction to cache-memory architectures, and discuss the resulting requirements on cache-efficient algorithms.
Keywords
Matrix Block Access Pattern Cache Line Element Operation Cache Memory
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.D. J. Abel and D. M. Mark. A comparative analysis of some two-dimensional orderings. International Journal of Geographical Information Systems, 4(1):21–31, 1990.Google Scholar
- 2.D. J. Abel and J. L. Smith. A data structure and algorithm based on a linear key for a rectangle retrieval problem. Computer Vision, Graphics, and Image Processing, 24:1–13, 1983.Google Scholar
- 3.K. Abend, T. J. Harley, and L. N. Kanal. Classification of binary random patterns. IEEE Transactions on Information Theory, IT-11(4):538–544, 1965.Google Scholar
- 4.M. Aftosmis, M. Berger, and J. Melton. Robust and efficient Cartesian mesh generation for component-based geometry. In 35 th Aerospace Sciences Meeting and Exhibit, 1997. AIAA 1997-0196.Google Scholar
- 5.M. J. Aftosmis, M. J. Berger, and S. M. Murman. Applications of space-filling curves to Cartesian methods for CFD. AIAA Paper 2004-1232, 2004.Google Scholar
- 6.J. Akiyama, H. Fukuda, H. Ito, and G. Nakamura. Infinite series of generalized Gosper space filling curves. In CJCDGCGT 2005, volume 4381 of Lecture Notes in Computer Science, pages 1–9, 2007.Google Scholar
- 7.I. Al-Furaih and S. Ranka. Memory hierarchy management for iterative graph structures. In Parallel Processing Symposium, IPPS/SPDP 1998, pages 298–302. IEEE Computer Society, 1998.Google Scholar
- 8.F. Alauzet and A. Loseille. On the use of space filling curves for parallel anisotropic mesh adaptation. In Proceedings of the 18th International Meshing Roundtable, pages 337–357. Springer, 2009.Google Scholar
- 9.J. Alber and R. Niedermeier. On multidimensional curves with Hilbert property. Theory of Computing Systems, 33:295–312, 2000.Google Scholar
- 10.S. Aluru and F. E. Sevilgen. Parallel domain decomposition and load balancing using space-filling curves. In Proceedings of the Fourth International Conference on High-Performance Computing, pages 230–235. IEEE Computer Society, 1997.Google Scholar
- 11.N. Amenta, S. Choi, and G. Rote. Incremental constructions con BRIO. In Proceedings of the Nineteenth ACM Symposium on Computational Geometry, pages 211–219, 2003.Google Scholar
- 12.M. Amor, F. Arguello, J. López, O. Plata, and E. L. Zapata. A data-parallel formulation for divide and conquer algorithms. The Computer Journal, 44(4):303–320, 2001.Google Scholar
- 13.E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: a portable linear algebra library for high-performance computers. Technical Report CS-90-105, LAPACK Working Note #20, University of Tennessee, Knoxville, TN, 1990.Google Scholar
- 14.J. A. Anderson, C. D. Lorenz, and A. Travesset. General purpose molecular dynamics simulations fully implemented on graphics processing units. Journal of Computational Physics, 227(10):5342–5359, 2008.Google Scholar
- 15.A. Ansari and A. Fineberg. Image data ordering and compression using Peano scan and LOT. IEEE Transactions on Consumer Electronics, 38(3):436–445, 1992.Google Scholar
- 16.L. Arge, M. De Berg, H. Haverkort, and K. Yi. The priority R-tree: A practically efficient and worst-case optimal R-tree. ACM Transactions on Algorithms, 4(1):9:1–9:29, 2008.Google Scholar
- 17.D. N. Arnold, A. Mukherjee, and L. Pouly. Locally adapted tetrahedral meshes using bisection. SIAM Journal on Scientific Computing, 22(2):431–448, 2000.Google Scholar
- 18.T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer. Space-filling curves and their use in the design of geometric data structures. Theoretical Computer Science, 181(1):3–15, 1997.Google Scholar
- 19.M. Bader. Exploiting the locality properties of Peano curves for parallel matrix multiplication. In Proceedings of the Euro-Par 2008, volume 5168 of Lecture Notes in Computer Science, pages 801–810, 2008.Google Scholar
- 20.M. Bader, C. Böck, J. Schwaiger, and C. Vigh. Dynamically adaptive simulations with minimal memory requirement – solving the shallow water equations using Sierpinksi curves. SIAM Journal on Scientific Computing, 32(1):212–228, 2010.Google Scholar
- 21.M. Bader, R. Franz, S. Guenther, and A. Heinecke. Hardware-oriented implementation of cache oblivious matrix operations based on space-filling curves. In Parallel Processing and Applied Mathematics, 7th International Conference, PPAM 2007, volume 4967 of Lecture Notes in Computer Science, pages 628–638, 2008.Google Scholar
- 22.M. Bader and A. Heinecke. Cache oblivious dense and sparse matrix multiplication based on Peano curves. In Proceedings of the PARA ’08, 9th International Workshop on State-of-the-Art in Scientific and Parallel Computing, volume 6126/6127 of Lecture Notes in Computer Science, 2010. In print.Google Scholar
- 23.M. Bader, S. Schraufstetter, C. A Vigh, and J. Behrens. Memory efficient adaptive mesh generation and implementation of multigrid algorithms using Sierpinski curves. International Journal of Computational Science and Engineering, 4(1):12–21, 2008.Google Scholar
- 24.M. Bader and C. Zenger. Cache oblivious matrix multiplication using an element ordering based on a Peano curve. Linear Algebra and Its Applications, 417(2–3):301–313, 2006.Google Scholar
- 25.M. Bader and C. Zenger. Efficient storage and processing of adaptive triangular grids using Sierpinski curves. In Computational Science – ICCS 2006, volume 3991 of Lecture Notes in Computer Science, pages 673–680, 2006.Google Scholar
- 26.Y. Bandou and S.-I. Kamata. An address generator for an n-dimensional pseudo-Hilbert scan in a hyper-rectangular parallelepiped region. In International Conference on Image Processing, ICIP 2000, pages 707–714, 2000.Google Scholar
- 27.R. Bar-Yehuda and C. Gotsman. Time/space tradeoffs for polygon mesh rendering. ACM Transactions on Graphics, 15(2):141–152, 1996.Google Scholar
- 28.J. Barnes and P. Hut. A hierarchical O(NlogN) force-calculation algorithm. Nature, 324:446–449, 1986.Google Scholar
- 29.J.J. Bartholdi III and P. Goldsman. Vertex-labeling algorithms for the Hilbert spacefilling curve. Software: Practice and Experience, 31(5):395–408, 2001.Google Scholar
- 30.J. J. Bartholdi III and P. Goldsman. Multiresolution indexing of triangulated irregular networks. IEEE Transactions on Visualization and Computer Graphics, 10(3):1–12, 2004.Google Scholar
- 31.J. J. Bartholdi III and L. K. Platzman. An O(NlogN) planar travelling salesman heuristic based on spacefilling curves. Operations Research Letters, 1(4):121–125, 1982.Google Scholar
- 32.J. J. Bartholdi III and L. K. Platzman. Heuristics based on spacefilling curves for combinatorial problems in the Euclidian space. Management Science, 34(3):291–305, 1988.Google Scholar
- 33.A. C. Bauer and A. K. Patra. Robust and efficient domain decomposition preconditioners for adaptive hp finite element approximations of linear elasticity with and without discontinuous coefficients. International Journal for Numerical Methods in Engineering, 59:337–364, 2004.Google Scholar
- 34.K.E. Bauman. The dilation factor of the Peano–Hilbert curve. Mathematical Notes, 80(5):609–620, 2006. Translated from Matematicheskie Zametki, vol. 80, no. 5, 2006, pp. 643–656. Original Russian Text Copyright 2006 by K. E. Bauman.Google Scholar
- 35.R. Bayer. The universal B-tree for multidimensional indexing. Technical Report TUM-I9637, Institut für Informatik, Technische Universität München, 1996.Google Scholar
- 36.J. Behrens. Multilevel optimization by space-filling curves in adaptive atmospheric modeling. In F. Hülsemann, M. Kowarschik, and U. Rüde, editors, Frontiers in Simulation - 18th Symposium on Simulation Techniques, pages 186–196. SCS Publishing House, Erlangen, 2005.Google Scholar
- 37.J. Behrens. Adaptive atmospheric modeling: key techniques in grid generation, data structures, and numerical operations with applications, volume 54 of Lecture Notes in Computational Science and Engineering. Springer, 2006.Google Scholar
- 38.J. Behrens and M. Bader. Efficiency considerations in triangular adaptive mesh refinement. Philosophical Transactions of the Royal Society A, 367:4577–4589, 2009. Theme Issue ’Mesh generation and mesh adaptation for large-scale Earth-system modelling’.Google Scholar
- 39.J. Behrens, N. Rakowsky, W. Hiller, D. Handorf, M. Läuter, J. Päpke, and K. Dethloff. Parallel adaptive mesh generator for atmospheric and oceanic simulation. Ocean Modelling, 10:171–183, 2005.Google Scholar
- 40.J. Behrens and J. Zimmermann. Parallelizing an unstructured grid generator with a space-filling curve approach. In Euro-Par 2000 Parallel Processing, volume 1900 of Lecture Notes in Computer Science, pages 815–823, 2000.Google Scholar
- 41.D. Bertsimas and M. Grigni. Worst-case example for the spacefilling curve heuristics for the Euclidian traveling salesman problem. Operations Research Letters, 8:241–244, 1989.Google Scholar
- 42.T. Bially. Space-filling curves: Their generation and their application to bandwidth reduction. IEEE Transactions on Information Theory, IT-15(6):658–664, 1969.Google Scholar
- 43.E. Bänsch. Local mesh refinement in 2 and 3 dimensions. IMPACT of Computing in Science and Engineering, 3(3):181–191, 1991.Google Scholar
- 44.A. Bogomjakov and C. Gotsman. Universal rendering sequences for transparent vertex caching of progressive meshes. Computer Graphics forum, 21(2):137–148, 2002.Google Scholar
- 45.E. Borel. Elements de la Theorie des Ensembles. Editions Albin Michel, Paris, 1949. Note IV: La courbe de Péano.Google Scholar
- 46.V. Brázdová and D. R. Bowler. Automatic data distribution and load balancing with space-filling curves: implementation in CONQUEST. Journal of Physics: Condensed Matter, 20, 2008.Google Scholar
- 47.G. Breinholt and Ch. Schierz. Algorithm 781: Generating Hilbert’s space-filling curve by recursion. ACM Transactions on Mathematical Software, 24(2):184–189, 1998.Google Scholar
- 48.M. Brenk, H.-J. Bungartz, M. Mehl, I. L. Muntean, T. Neckel, and T. Weinzierl. Numerical simulation of particle transport in a drift ratchet. SIAM Journal on Scientific Computing, 30(6):2777–2798, 2008.Google Scholar
- 49.K. Brix, S. Sorana Melian, S. Müller, and G. Schieffer. Parallelisation of multiscale-based grid adaption using space-filling curves. ESAIM: Proceedings, 29:108–129, 2009.Google Scholar
- 50.K. Buchin. Constructing Delauney triangulations along space-filling curves. In ESA 2009, volume 5757, pages 119–130, 2009.Google Scholar
- 51.E. Bugnion, T. Roos, R. Wattenhofer, and P. Widmayer. Space filling curves versus random walks. In Algorithmic Foundations of Geographic Information Systems, volume 1340, pages 199–211, 1997.Google Scholar
- 52.H.-J. Bungartz, M. Mehl, T. Neckel, and T. Weinzierl. The PDE framework Peano applied to fluid dynamics: an efficient implementation of a parallel multiscale fluid dynamics solver on octree-like adaptive Cartesian grids. Computational Mechanics, 46(1):103–114, 2010.Google Scholar
- 53.H.-J. Bungartz, M. Mehl, and T. Weinzierl. A parallel adaptive Cartesian PDE solver using space-filling curves. In E.W. Nagel, V.W. Walter, and W. Lehner, editors, Euro-Par 2006, Parallel Processing, 12th International Euro-Par Conference, volume 4128 of Lecture Notes in Computer Science, pages 1064–1074, 2006.Google Scholar
- 54.C. Burstedde, O. Ghattas, M. Gurnis, G. Stadler, E. Tan, T. Tu, L. C. Wilcox, and S. Zhong. Scalable adaptive mantle convection simulation on petascale supercomputers. In SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, pages 1–15. IEEE Press, 2008.Google Scholar
- 55.C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific Computing, 33(3):1103–1133, 2011.Google Scholar
- 56.A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov. The impact of multicore on math software. In Applied Parallel Computing, State of the Art in Scientific Computing, volume 4699 of Lecture Notes in Computer Science, pages 1–10, 2007.Google Scholar
- 57.A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class of parallel tiled linear algebra algorithms for multicore architectures. Technical Report UT-CS-07-600, LAPACK Working Note #191, ICL, University Tennessee, 2007.Google Scholar
- 58.A. R. Butz. Convergence with Hilbert’s space filling curve. Journal of Computer and System Sciences, 3:128–146, 1969.Google Scholar
- 59.A. R. Butz. Alternative algorithm for Hilbert’s space-filling curve. IEEE Transactions on Computers, C-20(4):424–426, 1971.Google Scholar
- 60.A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. X. Timmes, H. M. Tufo, J. W. Turan, M. Zingale, and G. Henry. High performance reactive fluid flow simulations using adaptive mesh refinement on thousands of processors. In Supercomputing ’00: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, page 56. IEEE Computer Society, 2000.Google Scholar
- 61.P. M. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio, and J. D. Terescoy. Dynamic octree load balancing using space-filling curves. Technical Report CS-03-01, Williams College Department of Computer Science, 2003.Google Scholar
- 62.X. Cao and Z. Mo. A new scalable parallel method for molecular dynamics based on cell-block data structure. In Parallel and Distributed Processing and Applications, 3358, pages 757–764, 2005.Google Scholar
- 63.J. Castro, M. Georgiopoulos, R. Demara, and A. Gonzalez. Data-partitioning using the hilbert space filling curves: Effect on the speed of convergence of Fuzzy ARTMAP for large database problems. Neural Networks, 18:967–984, 2005.Google Scholar
- 64.E. Cesaro. Remarques sur la courbe de von Koch. Atti della R. Accad. della Scienze fisiche e matem. Napoli, 12(15):1–12, 1905. Reprinted in: Opere scelte, a cura dell’Unione matematica italiana e col contributo del Consiglio nazionale delle ricerche, Vol. 2: Geometria, analisi, fisica matematica. Rome: Edizioni Cremonese, pp. 464-479, 1964.Google Scholar
- 65.S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear array layouts for hierarchical memory systems. In International Conference on Supercomputing (ICS’99). ACM, New York, 1999.Google Scholar
- 66.H.-L. Chen and Y.-I. Chang. Neighbor-finding based on space-filling curves. Information Systems, 30(3):205–226, 2005.Google Scholar
- 67.G. Chochia, M. Cole, and T. Heywood. Implementing the hierarchical PRAM on the 2d mesh: analyses and experiments. IEEE Symposium on Parallel and Distributed Processing, 0:587–595, 1995. Preprint on http://homepages.inf.ed.ac.uk/mic/Pubs/ECS-CSG-10-95.ps.gz.
- 68.W. J. Coirier and K. G. Powell. Solution-adaptive Cartesian cell approach for viscous and inviscid fluid flows. AIAA Journal, 34(5):938–945, 1996.Google Scholar
- 69.A. J. Cole. A note on space-filling curves. Software: Practice and Experience, 13:1181–1189, 1983.Google Scholar
- 70.S. Craver, B.-L. Yeo, and M. Yeung. Multilinearization data structure for image browsing. In Storage and Retrieval for Image and Video Databases VII, volume 3656, pages 155–166, 1998.Google Scholar
- 71.R. Dafner, D. Cohen-Or, and Y. Matias. Context-based space filling curves. Computer Graphics Forum, 19(3):209–218, 2000.Google Scholar
- 72.K. Daubner. Geometrische Modellierung mittels Oktalbäumen und Visualisierung von Simulationsdaten aus der Strömungsmechanik. Institut für Informatik, Technische Universität München, 2005.Google Scholar
- 73.L. De Floriani and E. Puppo. Hierarchical triangulation for multiresolution surface description. ACM Transactions on Graphics, 14(4):363–411, 1995.Google Scholar
- 74.J. M. Dennis. Partitioning with space-filling curves on the cubed-sphere. In Proceedings of the 17th International Symposium on Parallel and Distributed Processing, pages 269–275. IEEE Computer Society, 2003.Google Scholar
- 75.J. M. Dennis. Inverse space-filling curve partitioning of a global ocean model. In Parallel and Distributed Processing Symposium, IPDPS 2007, pages 1–10. IEEE International, 2007.Google Scholar
- 76.K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Terescoy, J. Falk, J. E. Flaherty, and L. G. Gervasio. New challenges in dynamic load balancing. Applied Numerical Mathematics, 52:133–152, 2005.Google Scholar
- 77.R. Diekmann, J. Hungershöfer, M. Lux, M. Taenzer, and J.-M. Wierum. Using space filling curves for efficient contact searching. In 16th IMACS World Congress, 2000.Google Scholar
- 78.J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1):1–28, 1990.Google Scholar
- 79.J. Dreher and R. Grauer. Racoon: A parallel mesh-adaptive framework for hyperbolic conservation laws. Parallel Computing, 31(8–9):913–932, 2005.Google Scholar
- 80.M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineev-Weinstein. ROAMing terrain: real-time optimally adapting meshes. In VIS ’97: Proceedings of the 8th Conference on Visualization ’97, pages 81–88. IEEE Computer Society Press, 1997.Google Scholar
- 81.E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström. Recursive blocked algorithms and hybrid data structures for dense matrix library software. SIAM Review, 46(1):3–45, 2004.Google Scholar
- 82.M. Elshafei and M. S. Ahmed. Fuzzification using space-filling curves. Intelligent Automation and Soft Computing, 7(2):145–157, 2001.Google Scholar
- 83.M. Elshafei-Ahmed. Fast methods for split codebooks. Signal Processing, 80:2553–2565, 2000.Google Scholar
- 84.W. Evans, D. Kirkpatrick, and G. Townsend. Right-triangulated irregular networks. Algorithmica, 30(2):264–286, 2001.Google Scholar
- 85.C. Faloutsos. Analytical results on the quadtree decomposition of arbitrary rectangles. Pattern Recognition Letters, 13:31–40, 1992.Google Scholar
- 86.C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. In Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 247–252, 1989.Google Scholar
- 87.R. Finkel and Bentley J. L. Quad trees: a data structure for retrieval on composite keys. Acta Informatica, 4(1):1–9, 1974.Google Scholar
- 88.J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Terescoy, and L. H. Ziantz. Adaptive local refinement with octree load balancing for the parallel solution of three-dimensional conservation laws. Journal of Parallel and Distributed Computing, 47:139–152, 1997.Google Scholar
- 89.A. C. Frank. Organisationsprinzipien zur Integration von geometrischer Modellierung, numerischer Simulation und Visualisierung. Herbert Utz Verlag, Dissertation, Institut für Informatik, Technische Universität München, 2000.Google Scholar
- 90.J. Frens and D. S. Wise. Auto-blocking matrix-multiplication or tracking BLAS3 performance from source code. In Proceedings of the 6th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 206–216, 1997.Google Scholar
- 91.J. Frens and D. S. Wise. QR factorization with Morton-ordered quadtree matrices for memory re-use and parallelism. In Proceedings of the 9th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 144–154, 2003.Google Scholar
- 92.M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In Proceedings of the 40th Annual Symposium on Foundations of Computer Science, pages 285–297, 1999.Google Scholar
- 93.H. Fukuda, M. Shimizu, and G. Nakamura. New Gosper space filling curves. In Proceedings of the International Conference on Computer Graphics and Imaging (CGIM2001), pages 34–38, 2001.Google Scholar
- 94.J. Gao and J. M. Steele. General spacefilling curve heuristics and limit theory for the traveling salesman problem. Journal of Complexity, 10:230–245, 1994.Google Scholar
- 95.M. Gardner. Mathematical games – in which “monster” curves force redefinition of the word “curve”. Scientific American, 235:124–133, Dec. 1976.Google Scholar
- 96.I. Gargantini. An effective way to represent quadtrees. Communications of the ACM, 25(12):905–910, 1982.Google Scholar
- 97.T. Gerstner. Multiresolution Compression and Visualization of Global Topographic Data. GeoInformatica, 7(1):7–32, 2003. (shortened version in Proc. Spatial Data Handling 2000, P. Forer, A.G.O. Yeh, J. He (eds.), pp. 14–27, IGU/GISc, 2000, also as SFB 256 report 29, Univ. Bonn, 1999).Google Scholar
- 98.P. Gibbon, W. Frings, S. Dominiczak, and B. Mohr. Performance analysis and visualization of the n-body tree code PEPC on massively parallel computers. In Parallel Computing: Current & Future Issues of High-End Computing, Proceedings of the International Conference ParCo 2005, volume 33 of NIC Series, pages 367–374, 2006.Google Scholar
- 99.W. Gilbert. A cube-filling Hilbert curve. The Mathematical Intelligencer, 6(3):78–79, 1984.Google Scholar
- 100.J. Gips. Shape Grammars and their Uses. Interdisciplinary Systems Research. Birkhäuser Verlag, 1975.Google Scholar
- 101.L. M. Goldschlager. Short algorithms for space-filling curves. Software: Practice and Experience, 11:99–100, 1981.Google Scholar
- 102.M. F. Goodchild and D. M. Mark. The fractal nature of geographic phenomena. Annals of the Association of American Geographers, 77(2):265–278, 1987.Google Scholar
- 103.K. Goto and R. van de Geijn. On reducing TLB misses in matrix multiplication. FLAME working note #9. Technical Report TR-2002-55, The University of Texas at Austin, Department of Computer Sciences, 2002.Google Scholar
- 104.K. Goto and R. A. van de Geijn. Anatomy of a high-performance matrix multiplication. ACM Transactions on Mathematical Software, 34(3):12:1–12:25, 2008.Google Scholar
- 105.C. Gotsman and M. Lindenbaum. On the metric properties of space-filling curves. IEEE Transactions on Image Processing, 5(5):794–797, 1996.Google Scholar
- 106.P. Gottschling, D. S. Wise, and A. Joshi. Generic support of algorithmic and structural recursion for scientific computing. International Journal of Parallel, Emergent and Distributed Systems, 24(6):479–503, 2009.Google Scholar
- 107.M. Griebel and M. A. Schweitzer. A particle-partition of unity method—part IV: Parallelization. In Meshfree Methods for Partial Differential Equations, volume 26 of Lecture Notes in Computational Science and Engineering, pages 161–192, 2002.Google Scholar
- 108.M. Griebel and G. Zumbusch. Parallel multigrid in an adaptive PDE solver based on hashing and space-filling curves. Parallel Computing, 27(7):827–843, 1999.Google Scholar
- 109.M. Griebel and G. Zumbusch. Hash based adaptive parallel multilevel methods with space-filling curves. In H. Rollnik and D. Wolf, editors, NIC Symposium 2001, volume 9 of NIC Series, pages 479–492. Forschungszentrum Jülich, 2002.Google Scholar
- 110.J. G. Griffiths. Table-driven algorithm for generating space-filling curves. Computer Aided Design, 17(1):37–41, 1985.Google Scholar
- 111.J. G. Griffiths. An algorithm for displaying a class of space-filling curves. Software: Practice and Experience, 16(5):403–411, 1986.Google Scholar
- 112.J. Gunnels, F. Gustavson, K. Pingali, and K. Yotov. Is cache-oblivious DGEMM viable? In Applied Parallel Computing. State of the Art in Scientific Computing, volume 4699 of Lecture Notes in Computer Science, pages 919–928, 2007.Google Scholar
- 113.J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn. FLAME: formal linear algebra methods environment. ACM Transactions on Mathematical Software, 27(4):422–455, 2001.Google Scholar
- 114.F. Günther, M. Mehl, M. Pögl, and C. Zenger. A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves. SIAM Journal on Scientific Computing, 28(5):1634–1650, 2006.Google Scholar
- 115.F. Gustavson, L. Karlsson, and B. Kågström. Parallel and cache-efficient in-place matrix storage format conversion. Transactions on Mathematical Software, 38(3):17:1–17:32, 2012.Google Scholar
- 116.F. G. Gustavson. Recursion leads to automatic variable blocking for dense linear-algebra algorithms. IBM Journal of Research and Development, 41(6), 1999.Google Scholar
- 117.G. Haase, M. Liebmann, and G. Plank. A Hilbert-order multiplication scheme for unstructured sparse matrices. International Journal of Parallel, Emergent and Distributed Systems, 22(4):213–220, 2007.Google Scholar
- 118.C. H. Hamilton and A. Rau-Chaplin. Compact Hilbert indices: Space-filling curves for domains with unequal side lengths. Information Processing Letters, 105:155–163, 2008.Google Scholar
- 119.H. Han and C.-W. Tseng. Exploiting locality for irregular scientific codes. IEEE Transactions on Parallel and Distributed Systems, 17(7):606–618, 2006.Google Scholar
- 120.J. Hartmann, A. Krahnke, and C. Zenger. Cache efficient data structures and algorithms for adaptive multidimensional multilevel finite element solvers. Applied Numerical Mathematics, 58(4):435–448, 2008.Google Scholar
- 121.A. Haug. Sierpinski-Kurven zur speichereffizienten numerischen Simulation auf adaptiven Tetraedergittern. Diplomarbeit, Fakultät für Informatik, Technische Universität München, 2006.Google Scholar
- 122.H. Haverkort and F. van Walderveen. Four-dimensional Hilbert curves for R-trees. In Proceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX), pages 63–73, 2009.Google Scholar
- 123.H. Haverkort and F. van Walderveen. Locality and bounding-box quality of two-dimensional space-filling curves. Computational Geometry: Theory and Applications, 43(2):131–147, 2010.Google Scholar
- 124.G. Heber, R. Biswas, and G. R. Gao. Self-avoiding walks over adaptive unstructured grids. Concurrency: Practice and Experience, 12:85–109, 2000.Google Scholar
- 125.D. J. Hebert. Symbolic local refinement of tetrahedral grids. Journal of Symbolic Computation, 17(5):457–472, 1994.Google Scholar
- 126.D. J. Hebert. Cyclic interlaced quadtree algorithms for quincunx multiresolution. Journal of Algorithms, 27:97–128, 1998.Google Scholar
- 127.A. Heinecke and M. Bader. Parallel matrix multiplication based on space-filling curves on shared memory multicore platforms. In Proceedings of the 2008 Computing Frontiers Conference and co-located workshops: MAW’08 and WRFT’08, pages 385–392. ACM, 2008.Google Scholar
- 128.B. Hendrickson. Load balancing fictions, falsehoods and fallacies. Applied Mathematical Modelling, 25:99–108, 2000.Google Scholar
- 129.B. Hendrickson and K. Devine. Dynamic load balancing in computational mechanics. Computer Methods in Applied Mechanical Engineering, 184:485–500, 2000.Google Scholar
- 130.J. R. Herrero and J. J. Navarro. Analysis of a sparse hypermatrix Cholesky with fixed-sized blocking. Applicable Algebra in Engineering, Communication and Computing, 18(3):279–295, 2007.Google Scholar
- 131.D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück. Mathematische Annalen, 38:459–460, 1891. Available online on the Göttinger Digitalisierungszentrum.Google Scholar
- 132.J.-W. Hong and H. T. Kung. I/O complexity: the red-blue pebble game. In Proceedings of ACM Symposium on Theory of Computing, pages 326–333, 1981.Google Scholar
- 133.H. Hoppe. Optimization of mesh locality for transparent vertex caching. In SIGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pages 269–276. ACM Press/Addison-Wesley Publishing Co., 1999.Google Scholar
- 134.Y. C. Hu, A. Cox, and W. Zwaenepoel. Improving fine-grained irregular shared-memory benchmarks by data reordering. In Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, pages # 33. IEEE Computer Society, 2000.Google Scholar
- 135.J. Hungershöfer and J.-M. Wierum. On the quality of partitions based on space-filling curves. In ICCS 2002, volume 2331 of Lecture Notes in Computer Science, pages 36–45, 2002.Google Scholar
- 136.G. M. Hunter and K. Steiglitz. Operations on images using quad trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2):145–154, 1979.Google Scholar
- 137.L. M. Hwa, M. A. Duchaineau, and K. i. Joy. Adaptive 4-8 texture hierarchies. In VIS ’04: Proceedings of the Conference on Visualization ’04, pages 219–226. IEEE Computer Society, 2004.Google Scholar
- 138.C. Jackings and S. L. Tanimoto. Octrees and their use in representing three-dimensional objects. Computer Graphics and Image Processing, 14(31):249–270, 1980.Google Scholar
- 139.H. V. Jagadish. Linear clustering of objects with multiple attributes. ACM SIGMOD Record, 19(2):332–342, 1990.Google Scholar
- 140.H. V. Jagadish. Analysis of the Hilbert curve for representing two-dimensional space. Information Processing Letters, 62(1):17–22, 1997.Google Scholar
- 141.G. Jin and J. Mellor-Crummey. SFCGen: a framework for efficient generation of multi-dimensional space-filling curves by recursion. ACM Transactions on Mathematical Software, 31(1):120–148, 2005.Google Scholar
- 142.Bentley J. L. and D. F. Stanat. Analysis of range searches in quad trees. Information Processing Letters, 3(6):170–173, 1975.Google Scholar
- 143.M. Kaddoura, C.-W. Ou, and S. Ranka. Partitioning unstructured computational graphs for nonuniform and adaptive environments. IEEE Concurrency, 3(3):63–69, 1995.Google Scholar
- 144.C. Kaklamanis and G. Persiano. Branch-and-bound and backtrack search on mesh-connected arrays of processors. Mathematical Systems Theory, 27:471–489, 1994.Google Scholar
- 145.S. Kamata, R. O. Eason, and Y. Bandou. A new algorithm for n-dimensional Hilbert scanning. IEEE Transactions on Image Processing, 8(7):964–973, 1999.Google Scholar
- 146.I. Kamel and C. Faloutsos. On packing R-trees. In Proceedings of the Second International ACM Conference on Information and Knowledge Management, pages 490–499. ACM New York, 1993.Google Scholar
- 147.E. Kawaguchi and T. Endo. On a method of binary-picture representation and its application to data compression. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2(1):27–35, 1980.Google Scholar
- 148.A. Klinger. Data structures and pattern recognition. In Proceedings of the First International Joint Conference on Pattern Recognition, pages 497–498. IEEE, 1973.Google Scholar
- 149.A. Klinger and C. R. Dyer. Experiments on picture representation using regular decomposition. Computer Graphics and Image Processing, 5:68–106, 1976.Google Scholar
- 150.K. Knopp. Einheitliche Erzeugung und Darstellung der Kurven von Peano, Osgood und von Koch. Archiv der Mathematik und Physik, 26:103–115, 1917.Google Scholar
- 151.I. Kossaczky. A recursive approach to local mesh refinement in two and three dimensions. Journal of Computational and Applied Mathematics, 55:275–288, 1994.Google Scholar
- 152.R. Kriemann. Parallel ℋ-matrix arithmetics on shared memory systems. Computing, 74:273–297, 2005.Google Scholar
- 153.J. P. Lauzon, D. M. Mark, L. Kikuchi, and J. A. Guevara. Two-dimensional run-encoding for quadtree representation. Computer Vision, Graphics, and Image Processing, 30(1):56–69, 1985.Google Scholar
- 154.J. K. Lawder and P. J. H. King. Querying multi-dimensional data indexed using the Hilbert space-filling curve. ACM SIGMOD Record, 30(1):19–24, 2001.Google Scholar
- 155.J. K. Lawder and P. J. H. King. Using state diagrams for Hilbert curve mappings. International Journal of Computer Mathematics, 78:327–342, 2001.Google Scholar
- 156.D. Lea. Digital and Hilbert k-d-trees. Information Processing Letters, 27:35–41, 1988.Google Scholar
- 157.H. L. Lebesgue. Leçons sur l’intégration et la recherche des fonctions primitives. Gauthier-Villars, Paris, 1904. Available online on the University of Michigan Historical Math Collection.Google Scholar
- 158.J.-H. Lee and Y.-C. Hsueh. Texture classification method using multiple space filling curves. Pattern Recognition Letters, 15:1241–1244, 1994.Google Scholar
- 159.M. Lee and H. Samet. Navigating through triangle meshes implemented as linear quadtrees. ACM Transactions on Graphics, 19(2):79–121, 2000.Google Scholar
- 160.A. Lempel and J. Ziv. Compression of two-dimensional data. IEEE Transactions on Information Theory, IT-32(1):2–8, 1986.Google Scholar
- 161.S. Liao, M. A. Lopez, and S. T. Leutenegger. High dimensional similarity search with space filling curves. In Proceedings of the 17th International Conference on Data Engineering, pages 615–622. IEEE Computer Society, 2000.Google Scholar
- 162.A. Lindenmayer. Mathematical models for cellular interactions in development. Journal of Theoretical Biology, 18:280–299, 1968.Google Scholar
- 163.P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner. Real-time, continuous level of detail rendering of height fields. In SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pages 109–118. ACM, 1996.Google Scholar
- 164.P. Lindstrom and V. Pascucci. Terrain simplification simplified: A general framework for view-dependent out-of-core visualization. Technical Report UCRL-JC-147847, 2002.Google Scholar
- 165.A Liu and B. Joe. On the shape of tetrahedra from bisection. Mathematics of Computation, 63:141–154, 1994.Google Scholar
- 166.A Liu and B. Joe. Quality local refinement of tetrahedral meshes based on bisection. SIAM Journal on Scientific Computing, 16:1269–1291, 1995.Google Scholar
- 167.P. Liu and S. N. Bhatt. Experiences with parallel n-body simulation. IEEE Transactions on Parallel and Distributed Systems, 11(12):1306–1323, 2000.Google Scholar
- 168.X. Liu. Four alternative patterns of the Hilbert curve. Applied Mathematics and Communication, 147:741–752, 2004.Google Scholar
- 169.X. Liu and G. Schrack. Encoding and decoding the Hilbert order. Software: Practice and Experience, 26(12):1335–1346, 1996.Google Scholar
- 170.X. Liu and G. F. Schrack. A new ordering strategy applied to spatial data processing. International Journal of Geographical Information Science, 12(1):3–22, 1998.Google Scholar
- 171.Y. Liu and J. Snoeyink. A comparison of five implementations of 3d Delaunay tessellation. Combinatorial and Computational Geometry, 52:439–458, 2005.Google Scholar
- 172.J. Luitjens, M. Berzins, and T. Henderson. Parallel space-filling curve generation through sorting. Concurrency and Computation: Practice and Experience, 19:1387–1402, 2007.Google Scholar
- 173.G. Mainar-Ruiz and J.-C. Perez-Cortes. Approximate nearest neighbor search using a single space-filling curve and multiple representations of the data points. In 18th International Conference on Pattern Recognition, 2006 – ICPR 2006, pages 502–505, 2006.Google Scholar
- 174.B. Mandelbrot. The Fractal Geometry of Nature. Freeman and Company, 1977, 1982, 1983.Google Scholar
- 175.Y. Matias and A. Shamir. A video scrambling technique based on space filling curves. In Advances in Cryptology – CRYPTO ’87, volume 293, pages 398–417, 1987.Google Scholar
- 176.J. M. Maubach. Local bisection refinement for n-simplicial grids generated by reflection. SIAM Journal on Scientific Computing, 16(1):210–227, 1995.Google Scholar
- 177.J. M. Maubach. Space-filling curves for 2-simplicial meshes created with bisections and reflections. Applications of Mathematics, 3:309–321, 2005.Google Scholar
- 178.D. Meagher. Geometric modelling using octree encoding. Computer Graphics and Image Processing, 19:129–147, 1980.Google Scholar
- 179.D. Meagher. Octree encoding: A new technique for the representation, manipulation and display of arbitrary 3d objects by computer. Technical report, Image Processing Laboratory, Rensselaer Polytechnic Institute, 1980.Google Scholar
- 180.M. Mehl, M. Brenk, H.-J. Bungartz, K. Daubner, I. L. Muntean, and T. Neckel. An Eulerian approach for partitioned fluid-structure simulations on Cartesian grids. Computational Mechanics, 43(1):115–124, 2008.Google Scholar
- 181.M. Mehl, T. Neckel, and P. Neumann. Navier-stokes and lattice-boltzmann on octree-like grids in the Peano framework. International Journal for Numerical Methods in Fluids, 65(1):67–86, 2010.Google Scholar
- 182.M. Mehl, T. Neckel, and T. Weinzierl. Concepts for the efficient implementation of domain decomposition approaches for fluid-structure interactions. In U. Langer, M. Discacciati, D.E. Keyes, O.B. Widlund, and W. Zulehner, editors, Domain Decomposition Methods in Science and Engineering XVII, volume 60 of Lecture Notes in Science an Enginnering, 2008.Google Scholar
- 183.M. Mehl, T. Weinzierl, and C. Zenger. A cache-oblivious self-adaptive full multigrid method. Numerical Linear Algebra with Applications, 13(2–3):275–291, 2006.Google Scholar
- 184.J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improving memory hierarchy performance for irregular applications using data and computation reorderings. International Journal of Parallel Programming, 29(3):217–247, 2001.Google Scholar
- 185.N. Memon, D. L. Neuhoff, and S. Shende. An analysis of some common scanning techniques for lossless image coding. IEEE Transactions on Image Processing, 9(11):1837–1848, 2000.Google Scholar
- 186.R. Miller and Q. F. Stout. Mesh computer algorithms for computational geometry. IEEE Transactions on Computers, 38(3):321–340, 1989.Google Scholar
- 187.W. F. Mitchell. Adaptive refinement for arbitrary finite-element spaces with hierarchical bases. Journal of Computational and Applied Mathematics, 36:65–78, 1991.Google Scholar
- 188.W. F. Mitchell. Hamiltonian paths through two- and three-dimensional grids. Journal of Research of the National Institute of Standards and Technology, 110(2):127–136, 2005.Google Scholar
- 189.W. F. Mitchell. A refinement-tree based partitioning method for dynamic load balancing with adaptively refined grids. Journal of Parallel and Distributed Computing, 67(4):417–429, 2007.Google Scholar
- 190.G. Mitchison and R. Durbin. Optimal numberings of an N ×N-array. SIAM Journal on Algebraic and Discrete Methods, 7(4):571–582, 1986.Google Scholar
- 191.B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering properties of the Hilbert space-filling curve. IEEE Transactions on Knowledge and Data Engineering, 13(1):124–141, 2001.Google Scholar
- 192.A. Mooney, J. G. Keating, and D. M. Heffernan. A detailed study of the generation of optically detectable watermarks using the logistic map. Chaos, Solitons and Fractals, 30(5):1088–1097, 2006.Google Scholar
- 193.E. H. Moore. On certain crinkly curves. Transactions of the American Mathematical Society, 1(1):72–90, 1900. Available online on JSTOR.Google Scholar
- 194.G. M. Morton. A computer oriented geodetic data base and a new technique in file sequencing. Technical report, IBM Ltd., Ottawa, Ontario, 1966.Google Scholar
- 195.R. D. Nair, H.-W. Choi, and H. M. Tufo. Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core. Computers & Fluids, 38(2):309–319, 2009.Google Scholar
- 196.R. Niedermeier, K. Reinhardt, and P. Sanders. Towards optimal locality in mesh-indexings. Discrete Applied Mathematics, 117:211–237, 2002.Google Scholar
- 197.M. G. Norman and P. Moscato. The Euclidian traveling salesman problem and a space-filling curve. Chaos, Solitons & Fractals, 6:389–397, 1995.Google Scholar
- 198.A. Null. Space-filling curves, or how to waste time with a plotter. Software: Practice and Experience, 1:403–410, 1971.Google Scholar
- 199.Y. Ohno and K. Ohyama. A catalog of non-symmetric self-similar space-filling curves. Journal of Recreational Mathematics, 23(4):247–254, 1991.Google Scholar
- 200.Y. Ohno and K. Ohyama. A catalog of symmetric self-similar space-filling curves. Journal of Recreational Mathematics, 23(3):161–174, 1991.Google Scholar
- 201.M. A. Oliver and N. E. Wiseman. Operations on quadtree encoded images. The Computer Journal, 26(1):83–91, 1983.Google Scholar
- 202.J. A. Orenstein. Spatial query processing in an object-oriented database system. ACM SIGMOD Record, 15(2):326–336, 1986.Google Scholar
- 203.J. A. Orenstein and F. A. Manola. PROBE spatial data modeling in an image database and query processing application. IEEE Transactions on Software Engineering, 14(5):611–629, 1988.Google Scholar
- 204.J. A. Orenstein and T. H. Merrett. A class of data structures for associative searching. In Proceedings of the 3rd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 181–190. ACM, 1984.Google Scholar
- 205.C.-W. Ou, M. Gunwani, and S. Ranka. Architecture-independent locality-improving transformations of computational graphs embedded in k-dimensions. In ICS ’95: Proceedings of the 9th International Conference on Supercomputing, pages 289–298, 1995.Google Scholar
- 206.C.-W. Ou, S. Ranka, and G. Fox. Fast and parallel mapping algorithms for irregular problems. Journal of Supercomputing, 10:119–140, 1996.Google Scholar
- 207.R. Pajarola. Large scale terrain visualization using the restricted quadtree triangulation. In VIS ’98: Proceedings of the Conference on Visualization ’98, pages 19–26. IEEE Computer Society Press, 1998.Google Scholar
- 208.S. Papadomanolakis, A. Ailamaki, J. C. Lopez, T. Tu, D. R. O’Hallaron, and G. Heber. Efficient query processing on unstructured tetrahedral meshes. In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pages 551–562, 2006.Google Scholar
- 209.M. Parashar, J. C. Browne, C. Edwards, and K. Klimkowski. A common data management infrastructure for parallel adaptive algorithms for PDE solutions. In Proceedings of the 1997 ACM/IEEE Conference on Supercomputing, pages 1–22. ACM Press, 1997.Google Scholar
- 210.M. Parashar and J. C. Browne. On partitioning dynamic adaptive grid hierarchies. In Proceedings of the 29th Annual Hawaii International Conference on System Sciences, pages 604–613, 1996.Google Scholar
- 211.V. Pascucci. Isosurface computation made simple: Hardware acceleration, adaptive refinement and tetrahedral stripping. In Joint Eurographics-IEEE TVCG Symposium on Visualization (VisSym), pages 293–300, 2004.Google Scholar
- 212.A. Patra and J. T. Oden. Problem decomposition for adaptive hp finite element methods. Computing Systems in Engineering, 6(2):97–109, 1995.Google Scholar
- 213.A. K. Patra, A. Laszloffy, and J. Long. Data structures and load balancing for parallel adaptive hp finite-element methods. Computers & Mathematics with Applications, 46(1):105–123, 2003.Google Scholar
- 214.G. Peano. Sur une courbe, qui remplit toute une aire plane. Mathematische Annalen, 36:157–160, 1890. Available online on the Göttinger Digitalisierungszentrum.Google Scholar
- 215.A. Pérez, S. Kamata, and E. Kawagutchi. Peano scanning of arbitrary size images. In 11th IAPR International Conference on Pattern Recognition, 1992. Vol.III. Conference C: Image, Speech and Signal Analysis, pages 565–568. IEEE, 1992.Google Scholar
- 216.E. Perlman, R. Burns, Y. Li, and C. Meneveau. Data exploration of turbulence simulations using a database cluster. In SC ’07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pages 1–11, 2007.Google Scholar
- 217.J. R. Pilkington and S. B. Baden. Partitioning with spacefilling curves. CSE Technical Report Number CS94–349, University of California, San Diego, 1994.Google Scholar
- 218.J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform structured workloads with spacefilling curves. IEEE Transactions on Parallel and Distributed Systems, 7(3):288–300, 1996.Google Scholar
- 219.L. K. Platzman and J. J. Bartholdi III. Spacefilling curves and the planar travelling salesman problem. Journal of the ACM, 36(4):719–737, 1989.Google Scholar
- 220.G. Polya. Über eine Peanosche Kurve. Bulletin de l’Académie des Sciences de Cracovie, Série A, pages 1–9, 1913.Google Scholar
- 221.P. Prusinkiewicz. Graphical applications of L-systems. In Proceedings of Graphics Interface ’86/Vision Interface ’86, pages 247–253, 1986.Google Scholar
- 222.P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer, 1990.Google Scholar
- 223.P. Prusinkiewicz, A. Lindenmayer, and F. D. Fracchia. Synthesis of space-filling curves on the square grid. In Fractals in the Fundamental and Applied Sciences, pages 341–366. North Holland, Elsevier Science Publisher B.V., 1991.Google Scholar
- 224.J. Quinqueton and M. Berthod. A locally adaptive Peano scanning algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-3(4):403–412, 1981.Google Scholar
- 225.A. Rahimian, I. Lashuk, S. K. Veerapaneni, A. Chandramowlishwaran, D. Malhotra, L. Moon, R. Sampath, A. Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and G. Biros. Petascale direct numerical simulation of blood flow on 200k cores and heterogeneous architectures. In ACM/IEEE Conference on Supercomputing, 2010, pages 1–11, 2010.Google Scholar
- 226.F. Ramsak, V. Markl, R. Fenk, Elhardt K., and R. Bayer. Integrating the UB-tree into a database system kernel. In Proceedings of the 26th International Conference on Very Large Databases, pages 263–272, 2000.Google Scholar
- 227.M.-C. Rivara and Ch. Levin. A 3-d refinement algorithm suitable for adaptive and multi-grid techniques. Communications in Applied Numerical Methods, 8:281–290, 1992.Google Scholar
- 228.S. Roberts, S. Kalyanasundaram, M. Cardew-Hall, and W. Clarke. A key based parallel adaptive refinement technique for finite element methods. In Computational Techniques and Applications: CTAC 97, pages 577–584. World Scientific Press, 1998.Google Scholar
- 229.B. Roychoudhury and J. F. Muth. The solution of travelling salesman problems based on industrial data. Journal of Complexity, 46(3):347–353, 1995.Google Scholar
- 230.H. Sagan. Some reflections on the emergence of space-filling curves. Journal of the Franklin Institute, 328:419–430, 1991.Google Scholar
- 231.H. Sagan. On the geometrization of the Peano curve and the arithmetization of the Hilbert curve. International Journal of Mathematical Education in Science and Technology, 23(3):403–411, 1992.Google Scholar
- 232.H. Sagan. A three-dimensional Hilbert curve. International Journal of Mathematical Education in Science and Technology, 24(4):541–545, 1993.Google Scholar
- 233.H. Sagan. Space-Filling Curves. Universitext. Springer, 1994.Google Scholar
- 234.J. K. Salmon, M. S. Warren, and G. S. Winckelmans. Fast parallel tree codes for gravitational and fluid dynamical n-body problems. International Journal of Supercomputer Applications, 8(2):129–142, 1994.Google Scholar
- 235.H. Samet. The quadtree and related hierarchical data structures. ACM Computing Surveys, 16(2):187–260, 1984.Google Scholar
- 236.P. Sanders and T. Hansch. Efficient massively parallel quicksort. In Proceedings of the 4th International Symposium on Solving Irregularly Structured Problems in Parallel, volume 1253 of Lecture Notes in Computer Science, pages 13–24, 1997.Google Scholar
- 237.M. Saxena, P. M. Finnigan, C. M. Graichen, A. F. Hathaway, and V. N. Parthasarathy. Octree-based automatic mesh generation for non-manifold domains. Engineering with Computers, 11(1):1–14, 1995.Google Scholar
- 238.S. Schamberger and J.-M. Wierum. A locality preserving graph ordering approach for implicit partitioning: Graph-filling curves. In Proceedings of the 17th International Conference on Parallel and Distributed Computing Systems, (PDCS’04), pages 51–57. ISCA, 2004.Google Scholar
- 239.S. Schamberger and J.-M. Wierum. Partitioning finite element meshes using space-filling curves. Future Generation Computer Systems, 21:759–766, 2005.Google Scholar
- 240.K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning for high-performance scientific simulations, pages 491–541. Morgan Kaufmann Publishers Inc., 2003.Google Scholar
- 241.W. J. Schroeder and M. S. Shephard. A combined octree/Delaunay method for fully automatic 3-d mesh generation. International Journal for Numerical Methods in Engineering, 26(1):37–55, 1988.Google Scholar
- 242.E. G. Sewell. Automatic generation of triangulation for piecewise polynomial approximation. Technical Report CSD-TR83, Purdue University, 1972. PhD Thesis.Google Scholar
- 243.M. S. Shephard and M. K. Georges. Automatic three-dimensional mesh generation by the finite octree technique. International Journal for Numerical Methods in Engineering, 32(4):709–749, 1991.Google Scholar
- 244.W. Sierpinski. Sur une nouvelle courbe continue qui remplit toute une aire plane. Bulletin de l’Académie des Sciences de Cracovie, Série A, pages 462–478, 1912.Google Scholar
- 245.J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy. Load balancing and data locality in adaptive hierarchical n-body methods: Barnes–Hut, fast multipole, and radiosity. Journal of Parallel and Distributed Computing, 27:118–141, 1995.Google Scholar
- 246.R. Siromoney and K. G. Subramanian. Space-filling curves and infinite graphs. In Graph-Grammars and Their Application to Computer Science, volume 153 of Lecture Notes in Computer Science, pages 380–391, 1983.Google Scholar
- 247.B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996.Google Scholar
- 248.V. Springel. The cosmological simulation code GADGET-2. Monthly Notices of the Royal Astronomical Society, 364:1105–1134, 2005.Google Scholar
- 249.J. Steensland, S. Chandra, and M. Parashar. An application-centric characterization of domain-based SFC partitioners for parallel SAMR. IEEE Transactions on Parallel and Distributed Systems, 13(12):1275–1289, 2002.Google Scholar
- 250.R. J. Stevens, A. F. Lehar, and F. H. Preston. Manipulation and presentation of multidimensional image data using the Peano scan. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-5(5):520–526, 1983.Google Scholar
- 251.Q. F. Stout. Topological matching. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pages 24–31, 1983.Google Scholar
- 252.H. Sundar, R. S. Sampath, S. S. Adavani, C. Davatzikos, and G. Biros. Low-constant parallel algorithms for finite element simulations using linear octrees. In SC ’07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pages 1–12. ACM, 2007.Google Scholar
- 253.H. Sundar, R. S. Sampath, and G. Biros. Bottom-up construction and 2:1 balance refinement of linear octrees in parallel. SIAM Journal on Scientific Computing, 30(5):2675–2708, 2008.Google Scholar
- 254.S. Tanimoto and T. Pavlidis. A hierarchical data structure for picture processing. Computer Graphics and Image Processing, 4:104–119, 1975.Google Scholar
- 255.J. Thiyagalingam, O. Beckmann, and P. H. J. Kelly. Is Morton layout competitive for large two-dimensional arrays yet? Concurrency and Computation: Practice and Experience, 18:1509–1539, 2006.Google Scholar
- 256.S. Tirthapura, S. Seal, and W. Aluru. A formal analysis of space filling curves for parallel domain decomposition. In Proceedings of the 2006 International Conference on Parallel Processing (ICPP’06), pages 505–512. IEEE Computer Society, 2006.Google Scholar
- 257.H. Tropf and H. Herzog. Multidimensional range search in dynamically balanced trees. Angewandte Informatik (Applied Informatics), 2:71–77, 1981.Google Scholar
- 258.T. Tu, D. R. O’Hallaron, and O. Ghattas. Scalable parallel octree meshing for terascale applications. In SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, page 4. IEEE Computer Society, 2005.Google Scholar
- 259.L. Velho and J. de Miranda Gomes. Digital halftoning with space filling curves. ACM SIGGRAPH Computer Graphics, 25(4):81–90, 1991.Google Scholar
- 260.L. Velho and J. Gomes. Variable resolution 4-k meshes: Concepts and applications. Computer Graphics forum, 19(4):195–212, 2000.Google Scholar
- 261.B. Von Herzen and A. H. Barr. Accurate triangulations of deformed, intersecting surfaces. ACM SIGGRAPH Computer Graphics, 21(4):103–110, 1987.Google Scholar
- 262.J. Wang and J. Shan. Space filling curve based point clouds index. In Proceedings of the 8th International Conference on GeoComputation, pages 551–562, 2005.Google Scholar
- 263.J. Warnock. A hidden surface algorithm for computer generated halftone pictures. Technical Report TR 4-15,, Computer Science Department, University of Utah, 1969.Google Scholar
- 264.M. S. Warren and J. K. Salmon. A parallel hashed oct-tree n-body algorithm. In Conference on High Performance Networking and Computing, Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, pages 12–21. ACM, 1993.Google Scholar
- 265.T. Weinzierl. A Framework for Parallel PDE Solvers on Multiscale Adaptive Cartesian Grids. Dissertation, Institut für Informatik, Technische Universität München, 2009.Google Scholar
- 266.T. Weinzierl and M. Mehl. Peano – a traversal and storage scheme for octree-like adaptive Cartesian multiscale grids. SIAM Journal on Scientific Computing, 33(5):2732–2760, 2011.Google Scholar
- 267.R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization of software and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.Google Scholar
- 268.J.-M. Wierum. Definition of a new circular space-filling curve – βΩ-indexing. Technical Report TR-001-02, Paderborn Center for Parallel Computing, PC2, 2002.Google Scholar
- 269.N. Wirth. Algorithmen und Datenstrukturen. Teubner, 1975.Google Scholar
- 270.N. Wirth. Algorithms + Data Structures = Programs. Prentice Hall, 1976.Google Scholar
- 271.D. S. Wise. Representing matrices as quadtrees for parallel processors. Information Processing Letters, 20(4):195–199, 1985.Google Scholar
- 272.D. S. Wise and S. Franco. Costs of quadtree representation of nondense matrices. Journal of Parallel and Distributed Computing, 9(3):282–296, 1990.Google Scholar
- 273.I. H. Witten and R. M. Neal. Using Peano curves for bilevel display of continuous tone images. IEEE Computer Graphics and Applications, pages 47–52, May 1982.Google Scholar
- 274.I. H. Witten and B. Wyvill. On the generation and use of space-filling curves. Software: Practice and Experience, 13:519–525, 1983.Google Scholar
- 275.Dawes W. N., S. A. Harvey, S. Fellows, N. Eccles, D. Jaeggi, and W. P Kellar. A practical demonstration of scalable, parallel mesh generation. In 47th AIAA Aerospace Sciences Meeting & Exhibit, 2009. AIAA-2009-0981.Google Scholar
- 276.W. Wunderlich. Irregular curves and functional equations. Ganita, 5:215–230, 1954.Google Scholar
- 277.W. Wunderlich. Über Peano-Kurven. Elemente der Mathematik, 28(1):1–24, 1973.Google Scholar
- 278.K. Yang and M. Mills. Fractal based image coding scheme using Peano scan. In Proceedings of ISCAS ’88, volume 1470, pages 2301–2304, 1988.Google Scholar
- 279.M.-M. Yau and S. N. Srihari. A hierarchical data structure for multidimensional digital images. Communications of the ACM, 26(7):504–515, 1983.Google Scholar
- 280.L. Ying, G. Biros, D. Zorin, and H. Langston. A new parallel kernel-independent fast multipole method. In SC ’03: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing. IEEE Computer Society, 2003.Google Scholar
- 281.K. Yotov, T. Roeder, K. Pingali, J. Gunnels, and F. Gustavson. An experimental comparison of cache-oblivious and cache-conscious programs. In Proceedings of the 19th annual ACM symposium on Parallel algorithms and architectures, pages 93–104, 2007.Google Scholar
- 282.Y. Zhang and R. E. Webber. Space diffusion: an improved parallel halftoning technique using space-filling curves. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pages 305–312. ACM New York, 1993.Google Scholar
- 283.S. Zhou and C. B. Jones. HCPO: an efficient insertion order for incremental delaunay triangulation. Information Processing Letters, 93:37–42, 2005.Google Scholar
- 284.U. Ziegler. The NIRVANA code: Parallel computational MHD with adaptive mesh refinement. Computer Physics Communications, 179(4):227–244, 2008.Google Scholar
- 285.G. Zumbusch. On the quality of space-filling curve induced partitions. Zeitschrift für Angewandte Mathematik und Mechanik, 81, Suppl. 1:25–28, 2001.Google Scholar
- 286.G. Zumbusch. Load balancing for adaptively refined grids. Proceedings in Applied Mathematics and Mechanics, 1:534–537, 2002.Google Scholar
- 287.G. Zumbusch. Parallel Multilevel Methods: Adaptive Mesh Refinement and Loadbalancing. Vieweg+Teubner, 2003.Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2013