Analyzing the Persuasion Context of the Persuasive Systems Design Model with the 3D-RAB Model

  • Isaac Wiafe
  • Muna M. Alhammad
  • Keiichi Nakata
  • Stephen R. Gulliver
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7284)


Research into design methodology is one of the most challenging issues in the field of persuasive technology. However, the introduction of the Persuasive Systems Design model, and the consideration of the 3-Dimensional Relationship between Attitude and Behavior, offer to make persuasive technologies more practically viable. In this paper we demonstrate how the 3-Dimensional Relationship between Attitude and Behavior guides the analysis of the persuasion context in the Persuasive System Design model. As a result, we propose a modification of the persuasion context and assert that the technology should be analyzed as part of strategy instead of event.


Target Behavior Technology Acceptance Model Cognitive Dissonance Technology Context Persuasive Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oinas-Kukkonen, H., Harjumaa, M.: Persuasive systems design: Key issues, process model, and system features. Communications of the Association for Information Systems (2009)Google Scholar
  2. 2.
    Purpura, S., Schwanda, V., Williams, K., Stubler, W., Sengers, P.: Fit4life: The design of a persuasive technology promoting healthy behavior and ideal weight. ACM (2011)Google Scholar
  3. 3.
    Segerståhl, K., Kotro, T., Väänänen-Vainio-Mattila, K.: Pitfalls in Persuasion: How Do Users Experience Persuasive Techniques in a Web Service? In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS, vol. 6137, pp. 211–222. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Wiafe, I., Nakata, K., Moran, S., Gulliver, S.: Considering user attitude and behaviour in persuasive systems design. In: European Conference on Information Systems, Helsinki, Finland (2011)Google Scholar
  5. 5.
    Oinas-Kukkonen, H., Harjumaa, M.: A Systematic Framework for Designing and Evaluating Persuasive Systems. In: Oinas-Kukkonen, H., Hasle, P., Harjumaa, M., Segerståhl, K., Øhrstrøm, P. (eds.) PERSUASIVE 2008. LNCS, vol. 5033, pp. 164–176. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Oinas-Kukkonen, H.: Behavior change support systems: The next frontier for web science. In: Web Science Conference 2010, Raleigh, NC, USA (2010)Google Scholar
  7. 7.
    Fogg, B.J.: Persuasive technology: Using computers to change what we think and do. Morgan Kaufmann (2002)Google Scholar
  8. 8.
    Petty, R.E., Cacioppo, J.T.: The elaboration likelihood model of persuasion. Advances in Experimental Social Psychology 19, 123–205 (1986)CrossRefGoogle Scholar
  9. 9.
    Petty, R.E., Wegener, D.T.: The elaboration likelihood model: Current status and controversies. Dual-Process Theories in Social Psychology, 41–72 (1999)Google Scholar
  10. 10.
    Wiafe, I., Nakata, K., Gulliver, S.R.: Designing Persuasive Third Party Applications for Social Networking Services Based on the 3D-RAB Model. In: Park, J.J., Yang, L.T., Lee, C. (eds.) FutureTech 2011, Part II. CCIS, vol. 185, pp. 54–61. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Festiger, L.: A theory of cognitive dissonance. Row, Peterson, New York (1957)Google Scholar
  12. 12.
    Räisänen, T., Lehto, T., Oinas-Kukkonen, H.: Practical Findings from Applying the PSD Model for Evaluating Software Design Specifications. In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS, vol. 6137, pp. 185–192. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Fogg, B.J.: Captology: The study of computers as persuasive technologies. ACM, New York (1997)Google Scholar
  14. 14.
    Sterns, A.A., Mayhorn, C.B.: Persuasive Pillboxes: Improving Medication Adherence with Personal Digital Assistants. In: IJsselsteijn, W.A., de Kort, Y.A.W., Midden, C., Eggen, B., van den Hoven, E. (eds.) PERSUASIVE 2006. LNCS, vol. 3962, pp. 195–198. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Ajzen, I.: The theory of planned behavior. Organizational behavior and human decision processes 50(2), 179–211 (1991)CrossRefGoogle Scholar
  16. 16.
    Radhakrishna, G., Saxena, A.: Application of cognitive dissonance theory to reduce dropouts in distance education system (2005)Google Scholar
  17. 17.
    Aronson, E.: Back to the future: Retrospective review of leon festinger’s “a theory of cognitive dissonance”. The American Journal of Psychology 110(1), 127–137 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mathieson, K.: Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research 2(3), 173 (1991)CrossRefGoogle Scholar
  19. 19.
    Fogg, B.J., Hreha, J.: Behavior Wizard: A Method for Matching Target Behaviors with Solutions. In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS, vol. 6137, pp. 117–131. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Isaac Wiafe
    • 1
  • Muna M. Alhammad
    • 1
  • Keiichi Nakata
    • 1
  • Stephen R. Gulliver
    • 1
  1. 1.Informatics Research Centre, Henley Business School, WhiteknightsUniversity of ReadingReadingUK

Personalised recommendations