Advertisement

Sintering pp 137-158 | Cite as

Electric Field and Current Effects on Sintering

  • Zuhair A. Munir
  • Dat V. Quach
  • Manshi Ohyanagi
Chapter
Part of the Engineering Materials book series (ENG.MAT., volume 35)

Abstract

The goal of consolidating powders to achieve high densities at lower temperatures and with a small grain size has motivated considerable efforts in the search for methods to activate the sintering process. Enhancement of the consolidation process has been attempted through various approaches including mechanical activation of the powders, the addition of sintering aids, and the use of electromagnetic fields. The latter approach has received considerable attention in recent years, largely due to the widespread use of devices utilizing current and pressure to consolidate powders. The Spark Plasma Sintering method (also known by other names) has seen a remarkable increase in its utilization over the past two decades. This was largely due to the many significant, and in some cases, unique accomplishments. In this chapter we will focus then on the role of the electric field in sintering with emphasis on recent observations, particularly those pertaining to the consolidation of nanostructured materials.

Keywords

Metallic Glass Spark Plasma Sinter Joule Heating Space Charge Layer Boundary Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Munir, Z.A., Anselmi-Tamburini, U., Ohyanagi, M.: J. Mater. Sci. 41(3), 763–777 (2006)CrossRefGoogle Scholar
  2. 2.
    Munir, Z.A., Quach, D.V., Ohyanagi, M.: J. Am. Ceram. Soc. 94(1), 1–19 (2011)CrossRefGoogle Scholar
  3. 3.
    Cologna, M., Rashkova, B., Raj, R.: J. Am. Ceram. Soc. 93(11), 3556–3559 (2010)CrossRefGoogle Scholar
  4. 4.
    Yang, D., Conrad, H.: Mat. Sci. Eng. A-Struct. 528(3), 1221–1225 (2011)CrossRefGoogle Scholar
  5. 5.
    Frei, J.M., Anselmi-Tamburini, U., Munir, Z.A.: J. Appl. Phys. 101(11), 114914/114911–114918 (2007)Google Scholar
  6. 6.
    Jeong, J.W., Han, J.H., Kim, D.Y.: J. Am. Ceram. Soc. 83(4), 915–918 (2000)CrossRefGoogle Scholar
  7. 7.
    Tokita, M.: Ceram. Trans. 194, 51–59 (2006)Google Scholar
  8. 8.
    Misawa, T., Shikani, N., Kawakami, Y., Enjoji, T., Ohtsu, Y.: Mater. Sci. Forum 638–642, 2109–2114 (2010)CrossRefGoogle Scholar
  9. 9.
    Hulbert, D.M., Anders, A., Dudina, D.V., Andersson, J., Jiang, D., Unuvar, C., Anselmi-Tamburini, U., Lavernia, E.J., Mukherjee, A.K.: J. Appl. Phys. 104(3), 033305/033301–033307 (2008)Google Scholar
  10. 10.
    Misawa, T., Shikatani, N., Kawakami, Y., Enjoji, T., Ohtsu, Y., Fujita, H.: J. Mater. Sci. 44(6), 1641–1651 (2009)CrossRefGoogle Scholar
  11. 11.
    Nanko, M., Maruyama, T., Tomino, H.: J. Jpn. Inst. Met. 63(7), 917–923 (1999)Google Scholar
  12. 12.
    Mackenzie, K.J.D., Banerjee, R.K., Kasaai, M.R.: J. Mater. Sci. 14(2), 333–338 (1979)CrossRefGoogle Scholar
  13. 13.
    Mackenzie, K.J.D., Banerjee, R.K.: J. Mater. Sci. 14(2), 339–344 (1979)CrossRefGoogle Scholar
  14. 14.
    Mackenzie, K.J.D., Ryan, M.J.: J. Mater. Sci. 16(3), 579–588 (1981)CrossRefGoogle Scholar
  15. 15.
    Brown, I.W.M., Mackenzie, K.J.D.: J. Mater. Sci. 17(12), 3663–3671 (1982)CrossRefGoogle Scholar
  16. 16.
    Korte, C., Ravishankar, N., Carter, C.B., Schmalzried, H.: Solid State Ion. 148(1–2), 111–121 (2002)CrossRefGoogle Scholar
  17. 17.
    Korte, C., Franz, B., Hesse, D.: Phys. Chem. Chem. Phys. 7(2), 413–420 (2005)CrossRefGoogle Scholar
  18. 18.
    Friedman, J.R., Garay, J.E., Anselmi-Tamburini, U., Munir, Z.A.: Intermetallics 12(6), 589–597 (2004)CrossRefGoogle Scholar
  19. 19.
    Garay, J.E., Anselmi-Tamburini, U., Munir, Z.A.: Acta Mater. 51(15), 4487–4495 (2003)CrossRefGoogle Scholar
  20. 20.
    Bertolino, N., Garay, J., Anselmi-Tamburini, U., Munir, Z.A.: Philos. Mag. B 82(8), 969–985 (2002)Google Scholar
  21. 21.
    Bertolino, N., Garay, J., Anselmi-Tamburini, U., Munir, Z.A.: Scripta Mater. 44(5), 737–742 (2001)CrossRefGoogle Scholar
  22. 22.
    Chen, W., Anselmi-Tamburini, U., Garay, J.E., Groza, J.R., Munir, Z.A.: Mater. Sci. Eng. A-Struct. 394(1–2), 132–138 (2005)CrossRefGoogle Scholar
  23. 23.
    Kondo, T., Yasuhara, M., Kuramoto, T., Kodera, Y., Munir, Z.A., Ohyanagi, M.: J. Mater. Sci. 43(19), 6400–6405 (2008)CrossRefGoogle Scholar
  24. 24.
    Kondo, T., Kuramoto, T., Kodera, Y., Ohyanagi, M., Munir, Z.A.: J. Jpn. Soc. Powder Metall. 55, 643–650 (2008)CrossRefGoogle Scholar
  25. 25.
    Kondo, T., Kuramoto, T., Kodera, Y., Ohyanagi, M., Munir, Z.A.: J. Ceram. Soc. Jpn. 116(1359), 1187–1192 (2008)CrossRefGoogle Scholar
  26. 26.
    Zhao, J., Garay, J.E., Anselmi-Tamburini, U., Munir, Z.A.: J. Appl. Phys. 102(11), 114902/114901–114907 (2007)Google Scholar
  27. 27.
    Choi, J.I., Han, J.H., Kim, D.Y.: J. Am. Ceram. Soc. 86(2), 347–350 (2003)CrossRefGoogle Scholar
  28. 28.
    Jin, H.R., Yoon, S.H., Lee, J.H., Lee, J.H., Hwang, N.M., Kim, D.Y., Han, J.H.: J. Am. Ceram. Soc. 87(9), 1747–1752 (2004)CrossRefGoogle Scholar
  29. 29.
    Kliewer, K.L., Koehler, J.S.: Phys. Rev. 140(4A), 1226–1240 (1965)Google Scholar
  30. 30.
    Kliewer, K.L.: Phys. Rev. 140(4A), 1241–1246 (1965)Google Scholar
  31. 31.
    Schwensfeir, R.J., Elbaum, C.: J. Phys. Chem. Solids. 26(4), 781–782 (1965)Google Scholar
  32. 32.
    Munir, Z.A., Nguyen, T.T.: Philos. Mag. A 47(1), 105–117 (1983)CrossRefGoogle Scholar
  33. 33.
    Munir, Z.A., Yeh, A.A.: Philos. Mag. A 56(1), 63–71 (1987)CrossRefGoogle Scholar
  34. 34.
    Machida, C.A., Munir, Z.A.: J. Cryst. Growth 68(3), 665–670 (1984)CrossRefGoogle Scholar
  35. 35.
    Kingery, W.D.: J. Am. Ceram. Soc. 57(1), 1–8 (1974)CrossRefGoogle Scholar
  36. 36.
    Yang, D., Conrad, H.: J. Mater. Sci. 43(13), 4475–4482 (2008)CrossRefGoogle Scholar
  37. 37.
    Yang, D., Conrad, H.: Scripta Mater. 36(12), 1431–1435 (1997)CrossRefGoogle Scholar
  38. 38.
    Ghosh, S., Chokshi, A.H., Lee, P., Raj, R.: J. Am. Ceram. Soc. 92(8), 1856–1859 (2009)CrossRefGoogle Scholar
  39. 39.
    Quach, D.V., Avila-Paredes, H., Kim, S., Martin, M., Munir, Z.A.: Acta Mater. 58(15), 5022–5030 (2010)CrossRefGoogle Scholar
  40. 40.
    Michels, A., Krill, C.E., Ehrhardt, H., Birringer, R., Wu, D.T.: Acta Mater. 47(7), 2143–2152 (1999)CrossRefGoogle Scholar
  41. 41.
    Kanters, J., Eisele, U., Boder, H., Rodel, J.: Adv. Eng. Mater. 3(3), 158–162 (2001)CrossRefGoogle Scholar
  42. 42.
    Tekeli, S., Erdogan, M., Aktas, B.: Ceram. Int. 30(8), 2203–2209 (2004)CrossRefGoogle Scholar
  43. 43.
    Dahl, P., Kaus, I., Zhao, Z., Johnsson, M., Nygren, M., Wiik, K., Grande, T., Einarsrud, M.A.: Ceram. Int. 33(8), 1603–1610 (2007)CrossRefGoogle Scholar
  44. 44.
    Yang, D., Conrad, H.: Scripta Mater. 63(3), 328–331 (2010)CrossRefGoogle Scholar
  45. 45.
    Yang, D., Raj, R., Conrad, H.: J. Am. Ceram. Soc. 93(10), 2935–2937 (2010)CrossRefGoogle Scholar
  46. 46.
    Cologna, M., Prette, A.L.G., Raj, R.: J. Am. Ceram. Soc. 94(2), 316–319 (2011)CrossRefGoogle Scholar
  47. 47.
    Cologna, M., Raj, R.: J. Am. Ceram. Soc. 94(2), 391–395 (2011)CrossRefGoogle Scholar
  48. 48.
    Hwang, S.-L., Chen, I.-W.: J. Am. Ceram. Soc. 73(11), 3269–3277 (1990)CrossRefGoogle Scholar
  49. 49.
    Fu, Z., Wang, K., Tan, T., Xiong, Y., He, D., Wang, Y., Munir, Z.A.: Ceram. Trans. 194, 3–21 (2006)Google Scholar
  50. 50.
    Togofuku, N., Kuramoto, T., Imai, T., Ohyanagi, M., Munir, Z.A.: J. Mater. Sci. 47, 2201–2205 (2012)CrossRefGoogle Scholar
  51. 51.
    Shearwood, C., Ng, H.B.: Spark plasma sintering of wire exploded tungsten nano-powder. In: Hariz, A.J., Varadan, V.K. (eds.) pp. 67981B-67981–67910, Canberra, Australia (2007)Google Scholar
  52. 52.
    Kim, D.Y., Gladel, G., Accary, A.: Morphological study of tungsten powder obtained by hydrogen reduction of tungsten trioxide powder at 700–900 C. In: European Symposium on Powder Metallurgy, vol. 2, pp. 185–193 (1978)Google Scholar
  53. 53.
    Asoka-Kumar, P., O’Brien, K., Lynn, K.G.: Appl. Phys. Lett. 68(3), 406–408 (1996)CrossRefGoogle Scholar
  54. 54.
    Liao, C.-N., Wu, L.-C.: Appl. Phys. Lett. 95 052112/052111–052113 (2009)Google Scholar
  55. 55.
    Garay, J.E., Glade, S.C., Anselmi-Tamburini, U., Asoka-Kumar, P., Munir, Z.A.: Appl. Phys. Lett. 85(4), 573–575 (2004)CrossRefGoogle Scholar
  56. 56.
    Munir, Z.A., Schmalzried, H.: J. Mater. Synth. Process. 1(1), 3–16 (1993)Google Scholar
  57. 57.
    Holland, T.B., Loffler, J.F., Munir, Z.A.: J. Appl. Phys. 95(5), 2896–2899 (2004)CrossRefGoogle Scholar
  58. 58.
    Seo, W.S., Pai, C.H., Koumoto, K., Yanagida, H.: Nippon Seram Kyo. Gak. 99(6), 443–447 (1991)CrossRefGoogle Scholar
  59. 59.
    Sommer, M., Schubert, W.D., Zobetz, E., Warbichler, P.: Int. J. Refract. Met. Hard Mater 20(1), 41–50 (2002)CrossRefGoogle Scholar
  60. 60.
    Toyofuku, N., Nishimoto, M., Arayama, K., Kodera, Y., Ohyanagi, M., Munir, Z.A.: Ceram. Trans. (ACS) 212, 31–40 (2010)Google Scholar
  61. 61.
    Toyofuku, N., Yamasaki, N., Kodera, Y., Ohyanagi, M., Munir, Z.A.: J. Ceram. Soc. Jpn. 117(2), 189–193 (2009)CrossRefGoogle Scholar
  62. 62.
    Yamamoto, T., Ishibashi, N., Toyofuku, N., Kodera, Y., Ohyanagi, M., Munir, Z.A.: Consolidation of h-BN with disorder-order transformation. Innovative Processing and Synthesis of Ceramics, Glasses and Composites, Materials Science and Technology (MS&T) 2006: Processing, pp. 531–538 (2006)Google Scholar
  63. 63.
    Kodera, Y., Yamamoto, T., Toyofuku, N., Ohyanagi, M., Munir, Z.A.: J. Mater. Sci. 41(3), 727–732 (2006)CrossRefGoogle Scholar
  64. 64.
    Kodera, Y., Kotera, H., Yamamoto, T., Ohyanagi, M., Munir, Z.A.: Phys. Stat. Solid C 3, 2876–2879 (2006)CrossRefGoogle Scholar
  65. 65.
    Yamamoto, T., Kitaura, H., Kodera, Y., Ishii, T., Ohyanagi, M., Munir, Z.A.: J. Am. Ceram. Soc. 87, 1436–1441 (2004)CrossRefGoogle Scholar
  66. 66.
    Ohyanagi, M., Yamamoto, T., Kitaura, H., Kodera, Y., Ishii, T., Munir, Z.A.: Scripta Mater. 50(1), 111–114 (2004)CrossRefGoogle Scholar
  67. 67.
    Puin, W., Rodewald, S., Ramlau, R., Heitjans, P., Maier, J.: Solid State Ion. 131(1–2), 159–164 (2000)CrossRefGoogle Scholar
  68. 68.
    Joo, J.H., Choi, G.M.: Solid State Ion. 177(11–12), 1053–1057 (2006)CrossRefGoogle Scholar
  69. 69.
    Zhang, Y.W., Jin, S., Yang, Y., Li, G.B., Tian, S.J., Jia, J.T., Liao, C.S., Yan, C.H.: Appl. Phys. Lett. 77(21), 3409–3411 (2000)CrossRefGoogle Scholar
  70. 70.
    Gleiter, H.: Acta Mater. 48(1), 1–29 (2000)CrossRefGoogle Scholar
  71. 71.
    Chadwick, A.V., Savin, S.L.P.: Solid State Ion. 177(35–36), 3001–3008 (2006)CrossRefGoogle Scholar
  72. 72.
    Maier, J.: Solid State Ion. 131(1–2), 13–22 (2000)CrossRefGoogle Scholar
  73. 73.
    Martin, M.C., Mecartney, M.L.: Solid State Ion. 161(1–2), 67–79 (2003)CrossRefGoogle Scholar
  74. 74.
    Upadhyaya, D.D., Ghosh, A., Gurumurthy, K.R., Prasad, R.: Ceram. Int. 27(4), 415–418 (2001)CrossRefGoogle Scholar
  75. 75.
    Zhang, C., Zhang, G., Leparoux, S., Liao, H., Li, C.X., Li, C.J., Coddet, C.J.: Eur. Ceram. Soc. 28(13), 2529–2538 (2008)CrossRefGoogle Scholar
  76. 76.
    Chen, X.J., Khor, K.A., Chan, S.H., Yu, L.G.: Mater. Sci. Eng. A-Struct. 341(1–2), 43–48 (2003)CrossRefGoogle Scholar
  77. 77.
    Trunec, M., Maca, K., Shen, Z.: Scripta Mater. 59(1), 23–26 (2008)CrossRefGoogle Scholar
  78. 78.
    Kim, S., Anselmi-Tambtirini, U., Park, H.J., Martin, M., Munir, Z.A.: Adv. Mater. 20(3), 556–559 (2008)Google Scholar
  79. 79.
    Quach, D.V., Kim, S., De Souza, R.A., Martin, M., Munir, Z.A.: Key Eng. Mater. 484, 107–116 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zuhair A. Munir
    • 1
  • Dat V. Quach
    • 1
  • Manshi Ohyanagi
    • 2
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA
  2. 2.Department of Materials ChemistryRyukoku UniversityOhtsuJapan

Personalised recommendations