Call Management in a Cellular Mobile Network Using Fuzzy Comparators

  • Sanchita Ghosh
  • Amit Konar
Part of the Studies in Computational Intelligence book series (SCI, volume 437)


The current literature on mobile communication usually considers the channel assignment and the call admission control as two independent problems. However, in practice these two problems are not fully independent. This chapter attempts to solve the complete problem by employing a fuzzy comparator, which compares the membership of two fuzzy measurement variables to take decisions about call admission, satisfying the necessary constrains of channel assignment. Two alternative approaches to handle the problem are addressed. The first approach is concerned with the development of a fuzzy to binary mapping of the measurement variables to decision variables. The latter approach deals with fuzzy to fuzzy mapping, and then employs a fuzzy threshold to transform the fuzzy decisions into binary values for execution. A performance of both the call management techniques are studied with the standard Philadelphia benchmark and the results outperform reported results on independent call admission and channel assignment problems. The results further envisage that the latter approach is better than the former with respect to resource utilization, adaptability to the network conditions and insensitivity to load variations.


Mobile Station Channel Assignment Call Admission Control Handoff Call Incoming Call 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wong, D., Lim, T.J.: Soft handoffs in CDMA mobile systems. IEEE Personal Communications Magazine 4(6), 6–17 (1997)CrossRefGoogle Scholar
  2. 2.
    Ye, J., Shen, X., Mark, J.W.: Call Admission Control in Wideband CDMA Cellular Networks by Using Fuzzy Logic. IEEE Transactions on Mobile Computing 4(2) (March/April 2005)Google Scholar
  3. 3.
    Kumar, D., Chellappan, C.: Adaptive Call Admission Control in Tdd-CDMA Cellular Wireless Networks. UbiCC Journal 4(3) (August 2009)Google Scholar
  4. 4.
    Jia, H., Zhang, H., Zhu, S., Xu, W.: Seamless QoS-Aware Call Admission Control Policy in Heterogeneous Wireless Networks. In: 4th International Conference on Wireless Communications, Networking and Mobile Computing 2008, vol. (12), pp. 1–6 (October 2008)Google Scholar
  5. 5.
    Huang, C.-J., Chuang, Y.-T., Yang, D.-X.: Implementation of call admission control scheme in next generation mobile communication networks using particle swarm optimization and fuzzy logic systems. Expert Systems with Applications 35(3), 1246–1251 (2008)CrossRefGoogle Scholar
  6. 6.
    Ni, W., Li, W., Alam, M.: Optimal Call Admission Control Policy In Wireless Networks. In: Wireless Communications and Networking Conference, March 31-April 3, pp. 2975–2979 (2008)Google Scholar
  7. 7.
    Chen, Y.H., Chang, C.J., Shen, S.: Outage-based fuzzy call admission controller with multi-user detection for WCDMA systems. IEE Proc. Commun. 152(5) (October 2005)Google Scholar
  8. 8.
    Chung-Ju, Chang, L.-C., Kuo, Y.-S., Chen, S.S.: Neural Fuzzy Call Admission and Rate Controller for WCDMA Cellular Systems Providing Multirate Services. In: IWCMC 2006, Vancouver, British Columbia, Canada, July 3–6 (2006)Google Scholar
  9. 9.
    Malarkkan, S., Ravichandran, V.C.: Performance analysis of call admission control in WCDMA System with Adaptive Multi Class Traffic based on Fuzzy Logic. IJCSNS International Journal of Computer Science and Network Security 6(11) (November 2006)Google Scholar
  10. 10.
    Chen, H., Cheng, C.C., Yeh, H.H.: Guard-Channel-Based Incremental and Dynamic Optimization on Call Admission Control for Next-Generation QoS-Aware Heterogeneous Systems. IEEE Trans. Veh. Technology 57(5) (September 2008)Google Scholar
  11. 11.
    Liu, Z., Zarki, M.E.: SIR-Based Call Admission Control for DSCDMA Cellular System. IEEE J. Selected Areas of Comm. 12, 638–644 (1994)CrossRefGoogle Scholar
  12. 12.
    Evans, J.S., Everitt, D.: Effective Bandwidth-Based Admission Control for Multiservice CDMA Cellular Networks. IEEE Trans. Vehicular Technology 48, 36–46 (1999)CrossRefGoogle Scholar
  13. 13.
    Chang, C., Shen, S., Lin, J., Ren, F.: Intelligent Call Admission Control for Differentiated QoS Provisioning in Wide Band CDMA Cellular System. In: Proc. IEEE Vehicular Technology Conf. (VTC 2000), pp. 1057–1063 (2000)Google Scholar
  14. 14.
    Comaniciu, C., Mandayam, N., Famolari, D., Agrawal, P.: QoS Guarantees for Third Generation (3G) CDMA Systems Via Admission and Flow Control. In: Proc. IEEE Vehicular Technology Conf. (VTC 2000), pp. 249–256 (2000)Google Scholar
  15. 15.
    Bambos, N., Chen, S.C., Pottie, G.J.: Channel Access Algorithms with Active Link Protection for Wireless Communication Networks with Power Control. IEEE/ACM Trans. Networking 8, 583–597 (2000)CrossRefGoogle Scholar
  16. 16.
    Andersin, M., Rosberg, Z., Zander, J.: Soft and Safe Admission Control in Cellular Networks. IEEE/ACM Trans. Networking 5, 255–265 (1997)CrossRefGoogle Scholar
  17. 17.
    Ho, C.-J., Copeland, J.A., Lea, C.-T., Stüber, G.L.: On Call Admission Control in DS/CDMA Cellular Networks. IEEE Trans. Vehicular Technology 50, 1328–1343 (2001)CrossRefGoogle Scholar
  18. 18.
    Fang, Y., Zhang, Y.: Call Admission Control Schemes and Performance Analysis in Wireless Mobile Networks. IEEE Trans. Vehicular Technology 51, 371–382 (2002)CrossRefGoogle Scholar
  19. 19.
    Wu, S., Wong, K.Y.M., Li, B.: A Dynamic Call Admission Policy with Precision QoS Guarantee Using Stochastic Control for Mobile Wireless Networks. IEEE/ACM Trans. Networking 10, 257–271 (2002)CrossRefGoogle Scholar
  20. 20.
    Fang, Y., Chlamtac, I.: Teletraffic Analysis and Mobility Modelling of PCS Networks. IEEE Trans. Comm. 47, 1062–1072 (1999)CrossRefGoogle Scholar
  21. 21.
    Naghshineh, M., Schwartz, M.: Distributed Call Admission Control in Mobile/Wireless Networks. IEEE J. Select. Areas Comm. 14, 711–717 (1996)CrossRefGoogle Scholar
  22. 22.
    Dziong, Z., Jia, M., Mermelstein, P.: Adaptive Traffic Admission for Integrated Services in CDMA Wireless-Access Networks. IEEE J. Seleced Areas of Comm. 14, 1737–1747 (1996)CrossRefGoogle Scholar
  23. 23.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall (1995)Google Scholar
  24. 24.
    Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice Hall (1997)Google Scholar
  25. 25.
    Rappaport, T.S.: Wireless Communications: Principles and Practice. Prentice Hall (1996)Google Scholar
  26. 26.
    Viterbi, A.J., Viterbi, A.M., Gilhousen, K.S., Zehavi, E.: Soft Handoff Extends CDMA Cell Coverage and Increase Reverse Link Capacity. IEEE J. Selected Areas of Comm. 12, 1281–1288 (1994)CrossRefGoogle Scholar
  27. 27.
    Braae, M., Rutherford, D.A.: Fuzzy Relations in a Control Setting. Kybernetes 7, 185–188 (1978)zbMATHCrossRefGoogle Scholar
  28. 28.
    Del Re, E., Frantacci, R., Giambene, G.: Handover and Dynamic Channel Allocation Techniques in Mobile Cellular Networks. IEEE Trans. Vehicular Technology 44, 229–237 (1995)CrossRefGoogle Scholar
  29. 29.
    Liu, T., Bahl, P., Chlamtac, I.: Mobility Modelling, Location Tracking, and Trajectory Prediction in Wireless ATM Networks. IEEE J. Selected Areas Comm. 16, 922–936 (1998)CrossRefGoogle Scholar
  30. 30.
    Guerin, R.A.: Channel Occupancy Time Distribution in a Cellular Radio System. IEEE Trans. Vehicular Technology 36, 89–99 (1987)CrossRefGoogle Scholar
  31. 31.
    Seskar, I., Maric, S., Holtzman, J., Wasserman, J.: Rate of Location Area Updates in Cellular Systems. In: Proc. IEEE Vehicular Technology Conc. (VTC 1992), pp. 694–697 (1992)Google Scholar
  32. 32.
    Nanda, S.: Teletraffic Models for Urban and Suburban Microcells: Cell Sizes and Handoff Rates. IEEE Trans. Vehicular Technology 42, 673–682 (1993)CrossRefGoogle Scholar
  33. 33.
    Varshney, U., Jain, R.: Issues in emerging 4G wireless networks. IEEE Computer 34(6), 94–96 (2001)CrossRefGoogle Scholar
  34. 34.
    Wong, D., Lim, T.J.: Soft handoffs in CDMA mobile systems. IEEE Personal Communications Magazine 4(6), 6–17 (1997)CrossRefGoogle Scholar
  35. 35.
    Prakash, R., Veeravalli, V.V.: Locally optimal soft handoff algorithms. IEEE Transactions on Vehicular Technology 52(2), 231–260 (2003)CrossRefGoogle Scholar
  36. 36.
    Lin, Y.-B., Pang, A.-C.: Comparing soft and hard handoffs. IEEE Transactions on Vehicular Technology 49(3), 792–798 (2000)CrossRefGoogle Scholar
  37. 37.
    Hong, D., Rappaport, S.S.: Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures. IEEE Transactions on Vehicular Technology 35(3), 77–92 (1986)CrossRefGoogle Scholar
  38. 38.
    Fang, Y., Chlamtac, I., Lin, Y.-B.: Channel occupancy times and handoff rate for mobile computing and PCS networks. IEEE Transactions on Computers 47(6), 679–692 (1998)CrossRefGoogle Scholar
  39. 39.
    Orlik, P.V., Rappaport, S.S.: A model for teletraffic performance and channel holding time characterization inwireless cellular communication with general session and dwell time distributions. IEEE Journal on Selected Areas in Communications 16(5), 788–803 (1998)CrossRefGoogle Scholar
  40. 40.
    Fang, Y., Chlamtac, I., Lin, Y.-B.: Call performance for a PCS network. IEEE Journal on Selected Areas in Communications 15(8), 1568–1581 (1997)CrossRefGoogle Scholar
  41. 41.
    Jedrzycki, C., Leung, V.C.M.: Probability distribution of channel holding time in cellular telephone systems. In: Proc. IEEE VTC 1996, Atlanta, GA, vol. 1, pp. 247–251 (May 1996)Google Scholar
  42. 42.
    Zonoozi, M.M., Dassanayake, P.: User mobility modeling and characterization of mobility patterns. IEEE Journal on Selected Areas in Communications 15(7), 1239–1252 (1997)CrossRefGoogle Scholar
  43. 43.
    Guerin, R.: Channel occupancy time distribution in a cellular radio system. IEEE Transactions on Vehicular Technology 35(3), 89–99 (1987)CrossRefGoogle Scholar
  44. 44.
    Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill (1965)Google Scholar
  45. 45.
    Gross, D., Harris, C.M.: Fundamentals of Queueing Theory, 3rd edn. John Wiley & Sons, Inc. (1998)Google Scholar
  46. 46.
    Kelly, F.P.: Fixed point models of loss networks. Australian Mathematical Society 31, 204–218 (1989)zbMATHCrossRefGoogle Scholar
  47. 47.
    Vidyarthi, G., Ngom, A., Stojmenovic, I.: A Hybrid Channel Assignment Approach Using an Efficient Evolutionary Strategy in Wireless Mobile Networks. IEEE Transactions on Vehicular Technology 54(5), 1887–1895 (2005)CrossRefGoogle Scholar
  48. 48.
    Battiti, R., Bertossi, A.A., Brunato, M.: Cellular Channel Assignment: a New Localized and Distributed Strategy. Mobile Networks and Applications 6, 493–500 (2001)Google Scholar
  49. 49.
    Li, S., Wang, L.: Channel Assignment for Mobile Communications Using Stochastic Chaotic Simulated Annealing. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 757–764. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  50. 50.
    Sivarajan, K.N., McEliece, R.J., Ketchum, J.W.: Channel assignment in cellular radio. In: Proc. 39th IEEE Veh. Technol. Soc. Conf., pp. 846–850 (May 1989)Google Scholar
  51. 51.
    Sivarajan, K.N., McEliece, R.J., Ketchum: Dynamic channel assignment in cellular radio. In: Proc. 40th IEEE Vehicular Technology Conf., pp. 631–637 (1990)Google Scholar
  52. 52.
    Ngo, C.Y., Li, V.O.K.: Fixed channel assignment in cellular radio networks using a modified genetic algorithm. IEEE Trans. Veh. Technol. 47(1), 163–172 (1998)CrossRefGoogle Scholar
  53. 53.
    Smith, K., Palaniswami, M.: Static and dynamic channel assignment using neural network. IEEE Journal on Selected Areas in Communications 15(2) (February 1997)Google Scholar
  54. 54.
    Pedryz, W., Vasilakos, A.: Computational Intelligence in Telecommunication Networks. CRC Press, Boca Raton (1997)Google Scholar
  55. 55.
    Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. MIT Press (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Artificial Intelligence Laboratory Department of Electronics and Telecommunication Engineering Jadavpur UniversityCalcuttaIndia
  2. 2.Artificial Intelligence Laboratory Department of Electronics and Telecommunication EngineeringJadavpur UniversityCalcuttaIndia

Personalised recommendations