Obsessive–Compulsive Disorders in Animals

  • Christine Winter


An increasing body of evidence suggests deep brain stimulation (DBS) is a therapeutic alternative in the treatment of otherwise therapy-resistant obsessive–compulsive disorders (OCD). An inconsistency in the demonstration of beneficial effects, however, indicates that the optimal DBS parameters and brain sites for the treatment of OCD have not been found yet. This chapter summarizes animal experimental studies using DBS as an investigative tool to systematically map brain regions at which DBS affects symptoms specific to OCD and to draw conclusions on the (patho-)physiological activity of the brain areas investigated in the course of symptom manifestation and reduction. Furthermore, the chapter discusses the translational validity of such animal experimental approaches as well as their contribution to further promote the establishment of DBS in the treatment of patients with otherwise therapy-resistant psychiatric disorders, such as OCD.


Deep Brain Stimulation Globus Pallidus Brain Site Thalamocortical Circuit Deep Brain Stimulation Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albelda N, Joel D (2012) Animal models of obsessive compulsive disorder: exploring pharmacology and neural substrates. Neurosci Biobehav Rev 36(1):47–63PubMedCrossRefGoogle Scholar
  2. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375PubMedCrossRefGoogle Scholar
  3. Andersen SL, Greene-Colozzi EA, Sonntag KC (2010) A novel, multiple symptom model of obsessive-compulsive-like behaviors in animals. Biol Psychiatry 68:741–747PubMedCrossRefGoogle Scholar
  4. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemont J (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337:403–406PubMedCrossRefGoogle Scholar
  5. Benazzouz A, Hallett M (2000) Mechanism of action of deep brain stimulation. Neurology 55(12 Suppl 6):S13–S16PubMedGoogle Scholar
  6. Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85:1351–1356PubMedGoogle Scholar
  7. Bourin M, Fiocco AJ, Clenet F (2001) How valuable are animal models in defining antidepressant activity? Hum Psychopharmacol 16(1):9–21PubMedCrossRefGoogle Scholar
  8. Bruet N, Windels F, Carcenac C, Feuerstein C, Bertrand A, Poupard A, Savasta M (2003) Neurochemical mechanisms induced by high frequency stimulation of the subthalamic nucleus: increase of extracellular striatal glutamate and GABA in normal and hemiparkinsonian rats. J Neuropathol Exp Neurol 62:1228–1240PubMedGoogle Scholar
  9. Carpenter TL, Pazdernik TL, Levant B (2003) Differences in quinpirole-induced local cerebral glucose utilization between naive and sensitized rats. Brain Res 964:295–301PubMedCrossRefGoogle Scholar
  10. Denys D, Mantione M, Figee M, van den Munckhof P, Koerselman F, Westenberg H, Bosch A, Schuurman R (2010) Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry 67(10):1061–1068PubMedCrossRefGoogle Scholar
  11. Djodari-Irani A, Klein J, Banzhaf J, Joel D, Heinz A, Harnack D, Lagemann T, Juckel G, Kupsch A, Morgenstern R, Winter C (2011) Activity modulation of the globus pallidus and the nucleus entopeduncularis affects compulsive checking in rats. Behav Brain Res 219(1):149–158PubMedCrossRefGoogle Scholar
  12. Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, Lozano AM (2000) Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 84(1):570–574PubMedGoogle Scholar
  13. Joel D (2006a) Current animal models of obsessive compulsive disorder: a critical review. Prog Neuropsychopharmacol Biol Psychiatry 30:374–388PubMedCrossRefGoogle Scholar
  14. Joel D (2006b) The signal attenuation rat model of obsessive-compulsive disorder: a review. Psychopharmacology 186:487–503PubMedCrossRefGoogle Scholar
  15. Klavir O, Flash S, Winter C, Joel D (2009) High frequency stimulation and pharmacological inactivation of the subthalamic nucleus reduces ‘compulsive’ lever-pressing in rats. Exp Neurol 215:101–109PubMedCrossRefGoogle Scholar
  16. Klavir O, Winter C, Joel D (2011) High but not low frequency stimulation of both the globus pallidus and the entopeduncular nucleus reduces ‘compulsive’ lever-pressing in rats. Behav Brain Res 216:84–93PubMedCrossRefGoogle Scholar
  17. Koo MS, Kim EJ, Roh D, Kim CH (2010) Role of dopamine in the pathophysiology and treatment of obsessive compulsive disorder. Expert Rev Neurother 10(2):275–290PubMedCrossRefGoogle Scholar
  18. Korff S, Harvey BH (2006) Animal models of obsessive compulsive disorder: rationale to understanding psychobiology and pharmacology. Psychiatr Clin N Am 29:371–390CrossRefGoogle Scholar
  19. Lee KH, Blaha CD, Harris BT, Cooper S, Hitti FL, Leiter JC, Roberts DW, Kim U (2006) Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson’s disease. Eur J Neurosci 23:1005–1014PubMedCrossRefGoogle Scholar
  20. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, Perret JE, Benabid AL (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:91–95PubMedCrossRefGoogle Scholar
  21. Mallet L, Polosan M, Jaafari N, Baup N, Welter ML, Fonatine D, du Montcel ST, Jelnik J, Chéreau I, Arbus C, Raoul S, Aouizerate B, Damier P, Charbardès S, Czernecki V, Ardouin C, Krebs MO, Bardinet E, Chaynes P, Burbaud P, Cornu P, Derost P, Bougerol T, Bataille B, Mattei V, Dormont D, Devaux B, Vérin M, Houeto JL, Pollak P, Benabid AL, Agid Y, Krack P, Millet B, Pelisollo A. (2008) N Engl J Med; 359(29):2121–2134Google Scholar
  22. McIntyre CC, Savasta M, Kerkerian-Le GL, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115:1239–1248PubMedCrossRefGoogle Scholar
  23. Meissner W, Harnack D, Reese R, Paul G, Reum T, Ansorge M, Kusserow H, Winter C, Morgenstern R, Kupsch A (2003) High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J Neurochem 85:601–609PubMedCrossRefGoogle Scholar
  24. Montgomery EB Jr, Baker KB (2000) Mechanisms of deep brain stimulation and future technical developments. Neurol Res 22:259–266PubMedGoogle Scholar
  25. Mundt A, Klein J, Joel D, Heinz A, Djodari-Irani A, Harnack D, Kupsch A, Orawa H, Juckel G, Morgenstern R, Winter C (2009) High-frequency stimulation of the nucleus accumbens core and shell reduces quinpirole-induced compulsive checking in rats. Eur J Neurosci 29:2401–2412PubMedCrossRefGoogle Scholar
  26. Perreault ML, Graham D, Bisnaire L, Simms J, Hayton S, Szechtman H (2006) Kappa-opioid agonist U69593 potentiates locomotor sensitization to the D2/D3 agonist quinpirole: pre- and postsynaptic mechanisms. Neuropsychopharmacology 31(9):1967–1981PubMedCrossRefGoogle Scholar
  27. Platt B, Beyer CE, Schechter LE, Rosenzweig-Lipson S (2008) Schedule-induced polydipsia: a rat model of obsessive compulsive disorder. Curr Protoc Neurosci 9(9):27PubMedGoogle Scholar
  28. Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440PubMedCrossRefGoogle Scholar
  29. Richards TL, Pazdernik TL, Levant B (2007) Clorgyline-induced modification of behavioral sensitization to quinpirole: effects on local cerebral glucose utilization. Brain Res 1160:124–133PubMedCrossRefGoogle Scholar
  30. Sesia T, Bizup B, Schreiber S, Grace AA (2011) Quinpirole and clomipramine chronic injection models for obsessive compulsive disorders: effect on ventral tegmentale activity and OCD-related behavioral paradigms. Society for Neuroscience Abstract Number 66.15Google Scholar
  31. Szechtman H, Sulis W, Eilam D (1998) Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD). Behav Neurosci 112:1475–1485PubMedCrossRefGoogle Scholar
  32. Szechtman H, Eckert MJ, Tse WS, Boersma JT, Bonura CA, McClelland JZ, Culver KE, Eilam D (2001) Compulsive checking behavior of quinpirole-sensitized rats as an animal model of obsessive-compulsive disorder (OCD): form and control. BMC Neurosci 2:4PubMedCrossRefGoogle Scholar
  33. Ushe M, Mink JW, Tabbal SD, Hong M, Schneider GP, Rich KM, Lyons KE, Pahwa R, Perlmutter JS (2006) Postural tremor suppression is dependent on thalamic stimulation frequency. Mov Disord 21:1290–1292PubMedCrossRefGoogle Scholar
  34. van Kuyck K, Demeulemeester H, Feys H, De WW, Dewil M, Tousseyn T, De SP, Gybels J, Bogaerts K, Dom R, Nuttin B (2003) Effects of electrical stimulation or lesion in nucleus accumbens on the behaviour of rats in a T-maze after administration of 8-OH-DPAT or vehicle. Behav Brain Res 140:165–173PubMedCrossRefGoogle Scholar
  35. van Kuyck K, Brak K, Das J, Rizopoulos D, Nuttin B (2008) Comparative study of the effects of electrical stimulation in the nucleus accumbens, the mediodorsal thalamic nucleus and the bed nucleus of the stria terminalis in rats with schedule-induced polydipsia. Brain Res 1201:93–99PubMedCrossRefGoogle Scholar
  36. Vitek JL (2002) Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord 17(Suppl 3):S69–S72PubMedCrossRefGoogle Scholar
  37. Willner P (1991) Behavioural models in psychopharmacology. In: Willner P (ed) Behavioural models in psychopharmacology: theoretical, industrial and clinical perspectives. Cambridge University Press, Cambridge, pp 3–18Google Scholar
  38. Winter C, Mundt A, Jalali R, Joel D, Harnack D, Morgenstern R, Juckel G, Kupsch A (2008a) High frequency stimulation and temporary inactivation of the subthalamic nucleus reduce quinpirole-induced compulsive checking behavior in rats. Exp Neurol 210:217–228PubMedCrossRefGoogle Scholar
  39. Winter C, Lemke C, Sohr R, Meissner W, Harnack D, Juckel G, Morgenstern R, Kupsch A (2008b) High frequency stimulation of the subthalamic nucleus modulates neurotransmission in limbic brain regions of the rat. Exp Brain Res 185:497–507PubMedCrossRefGoogle Scholar
  40. Woods A, Smith C, Szewczak M, Dunn RW, Cornfeldt M, Corbett R (1993) Selective serotonin re-uptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacology 112:195–198PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Section Experimental Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav CarusTechnical University DresdenDresdenGermany

Personalised recommendations