Advertisement

Neural Circuits Affected by Deep Brain Stimulation for the Treatment of Psychiatric Disorders

  • Suzanne N. Haber
  • Benjamin D. Greenberg
Chapter

Abstract

The neural network that underlies the pathophysiology of several diseases including obsessive–compulsive disorder (OCD) and major depression (MD) centers on the prefrontal–basal ganglia system. The structures most closely associated with these diseases are the anterior cingulate cortex, the orbitofrontal cortex, the ventral striatum, and parts of the thalamus. The most successful deep brain stimulation (DBS) targets for the treatment of OCD and MD are centered in white matter tracts and/or gray matter, chosen for their central location to capture specific prefrontal connections of the subgenual anterior cingulate and orbital cortex. As more knowledge is obtained concerning the details of these connections, more precise targets may be possible. This chapter reviews the connectivities likely to be involved at different DBS sites on the basis of non-human-primate circuitry studies of the ventral anterior cingulate gyrus and orbital cortex.

Keywords

Deep Brain Stimulation Anterior Cingulate Cortex White Matter Tract Internal Capsule Ventral Striatum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AC

Anterior commissure

ACC

Anterior cingulate cortex

dACC

Dorsal anterior cingulate cortex

DBS

Deep brain stimulation

MD

Major depression

OCD

Obsessive–compulsive disorder

OFC

Orbitofrontal cortex

PFC

Prefrontal cortex

SCGwm

Subgenual cingulate gyrus white matter

VC

Ventral anterior internal capsule

vmPFC

Ventromedial prefrontal cortex

vPFC

Ventral prefrontal cortex

VS

Ventral striatum

Notes

Acknowledgments

This work was supported by NIH grants MH086400 and MH73111.

References

  1. Beevor CE, Horsley V (1890) An experimental investigation into the arrangement of the excitable fibres of the internal capsule of the Bonnet Monkey (Macacus sinicus). Philos Trans Royal Soc Biol Sci 181:49–88CrossRefGoogle Scholar
  2. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. J.A. Barth, LeipzigGoogle Scholar
  3. Cecconi JP, Lopes AC, Duran FL, Santos LC, Hoexter MQ, Gentil AF, Canteras MM, Castro CC, Noren G, Greenberg BD, Rauch SL, Busatto GF, Miguel EC (2008) Gamma ventral capsulotomy for treatment of resistant obsessive-compulsive disorder: a structural MRI pilot prospective study. Neurosci Lett 447:138–142PubMedCrossRefGoogle Scholar
  4. Chamberlain SR, Menzies L, Hampshire A, Suckling J, Fineberg NA, del Campo N, Aitken M, Craig K, Owen AM, Bullmore ET, Robbins TW, Sahakian BJ (2008) Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science 321:421–422PubMedCrossRefGoogle Scholar
  5. Chase HW, Clark L, Myers CE, Gluck MA, Sahakian BJ, Bullmore ET, Robbins TW (2008) The role of the orbitofrontal cortex in human discrimination learning. Neuropsychologia 46:1326–1337PubMedCrossRefGoogle Scholar
  6. Dejerine J (1895) Anatomie des centres nerveux. Rueff, ParisGoogle Scholar
  7. Denys D, Mantione M, Figee M, van den Munckhof P, Koerselman F, Westenberg H, Bosch A, Schuurman R (2010) Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry 67:1061–1068PubMedCrossRefGoogle Scholar
  8. Fuster JM (2001) The prefrontal cortex—an update: time is of the essence. Neuron 30:319–333PubMedCrossRefGoogle Scholar
  9. Greenberg BD, Askland KD, Carpenter LL (2008) The evolution of deep brain stimulation for neuropsychiatric disorders. Front Biosci 13:4638–4648PubMedCrossRefGoogle Scholar
  10. Greenberg BD, Rauch SL, Haber SN (2010a) Invasive circuitry-based neurotherapeutics: stereotactic ablation and deep brain stimulation for OCD. Neuropsychopharmacology 35:317–336PubMedCrossRefGoogle Scholar
  11. Greenberg BD, Gabriels LA, Malone DA Jr, Rezai AR, Friehs GM, Okun MS, Shapira NA, Foote KD, Cosyns PR, Kubu CS, Malloy PF, Salloway SP, Giftakis JE, Rise MT, Machado AG, Baker KB, Stypulkowski PH, Goodman WK, Rasmussen SA, Nuttin BJ (2010b) Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol Psychiatry 15:64–79PubMedCrossRefGoogle Scholar
  12. Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26PubMedCrossRefGoogle Scholar
  13. Haber SN, Kim KS, Mailly P, Calzavara R (2006) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical inputs, providing a substrate for incentive-based learning. J Neurosci 26:8368–8376PubMedCrossRefGoogle Scholar
  14. Hamani C, Mayberg H, Snyder B, Giacobbe P, Kennedy S, Lozano AM (2009) Deep brain stimulation of the subcallosal cingulate gyrus for depression: anatomical location of active contacts in clinical responders and a suggested guideline for targeting. J Neurosurg 111:1209–1215PubMedCrossRefGoogle Scholar
  15. Kennedy SH, Giacobbe P, Rizvi SJ, Placenza FM, Nishikawa Y, Mayberg HS, Lozano AM (2011) Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. Am J Psychiatry 168(5):502–510PubMedCrossRefGoogle Scholar
  16. Lehman JF, Greenberg BD, McIntyre CC, Rasmussen SA, Haber SN (2011) Rules ventral prefrontal cortical axons use to reach their targets: implications for diffusion tensor imaging tractography and deep brain stimulation for psychiatric illness. J Neurosci 31:10392–10402PubMedCrossRefGoogle Scholar
  17. Mallet L et al (2008) Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med 359:2121–2134PubMedCrossRefGoogle Scholar
  18. Malone DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, Rauch SL, Rasmussen SA, Machado AG, Kubu CS, Tyrka AR, Price LH, Stypulkowski PH, Giftakis JE, Rise MT, Malloy PF, Salloway SP, Greenberg BD (2009) Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry 65:267–275PubMedCrossRefGoogle Scholar
  19. Mayberg HS (2003) Positron emission tomography imaging in depression: a neural systems perspective. Neuroimaging Clin N Am 13:805–815PubMedCrossRefGoogle Scholar
  20. Mayberg HS (2007) Defining the neural circuitry of depression: toward a new nosology with therapeutic implications. Biol Psychiatry 61:729–730PubMedCrossRefGoogle Scholar
  21. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660PubMedCrossRefGoogle Scholar
  22. McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22:8117–8132PubMedGoogle Scholar
  23. McGuire PK, Bench CJ, Frith CD, Marks IM, Frackowiak RS, Dolan RJ (1994) Functional anatomy of obsessive-compulsive phenomena. Br J Psychiatry 164:459–468PubMedCrossRefGoogle Scholar
  24. Nauta W (1964) Some efferent connections of the prefrontal cortex in the monkey. In: Waren J, Akert K (eds) The frontal granular cortex and behavior. McGraw-Hill, New York, pp 397–409Google Scholar
  25. Nuttin BJ, Gabriels LA, Cosyns PR, Meyerson BA, Andreewitch S, Sunaert SG, Maes AF, Dupont PJ, Gybels JM, Gielen F, Demeulemeester HG (2003) Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder. Neurosurgery 52:1263–1272; discussion 1272–1264Google Scholar
  26. O’Doherty J, Critchley H, Deichmann R, Dolan RJ (2003) Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. J Neurosci 23:7931–7939PubMedGoogle Scholar
  27. Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219PubMedCrossRefGoogle Scholar
  28. Petrides M, Pandya DN (2007) Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. J Neurosci 27:11573–11586PubMedCrossRefGoogle Scholar
  29. Petrides M, Alivisatos B, Frey S (2002) Differential activation of the human orbital, mid-ventrolateral, and mid-dorsolateral prefrontal cortex during the processing of visual stimuli. Proc Natl Acad Sci U S A 99:5649–5654PubMedCrossRefGoogle Scholar
  30. Rauch SL, Jenike MA, Alpert NM, Baer L, Breiter HC, Savage CR, Fischman AJ (1994) Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch Gen Psychiatry 51:62–70PubMedCrossRefGoogle Scholar
  31. Rudebeck PH, Bannerman DM, Rushworth MF (2008) The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making. Cogn Affect Behav Neurosci 8:485–497PubMedCrossRefGoogle Scholar
  32. Rushworth MF, Behrens TE, Rudebeck PH, Walton ME (2007) Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends Cogn Sci 11:168–176PubMedCrossRefGoogle Scholar
  33. Schmahmann J, Pandya D (2006) Fiber pathways of the brain. Oxford University Press, New YorkCrossRefGoogle Scholar
  34. Vitek JL (2002) Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord 17:S69–S72PubMedCrossRefGoogle Scholar
  35. Yucel M, Harrison BJ, Wood SJ, Fornito A, Wellard RM, Pujol J, Clarke K, Phillips ML, Kyrios M, Velakoulis D, Pantelis C (2007) Functional and biochemical alterations of the medial frontal cortex in obsessive-compulsive disorder. Arch Gen Psychiatry 64:946–955PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterUSA
  2. 2.Department of Psychiatry and Human Behavior, Alpert Medical School, Butler HospitalBrown UniversityProvidenceUSA

Personalised recommendations