Skip to main content

Basic Principles of Deep Brain Stimulation

  • Chapter
  • First Online:
Deep Brain Stimulation

Abstract

All evidence-based understanding regarding the principles of neurostimulation including deep brain stimulation (DBS) is based upon basic biophysical, electrochemical, and neurophysiological concepts. Scientific evidence for these concepts, although relatively old, provide a solid technical foundation regarding how to perform. Undoubtedly, the most striking progress in neuromodulation using DBS can be attributed to the enormous progress in anatomical, functional, and network visualization provided by MRI techniques. Only 25 years ago, all DBS implants were performed using ventriculography, which visualized only two landmarks in the three-dimensional brain: the anterior commissure and posterior commissure. Via a short period of CT-based DBS targeting in the first half of the 1990s, state-of-the-art DBS targeting is now based upon ever better and more revealing MRI techniques. Once the lead has been implanted in the patient’s brain, the device must be programmed to identify the optimal stimulation parameters that provide the most clinical benefit, the least amount of side effects, and ideally, utilize the lowest energy. This process is made easier with knowledge of the patient’s brain anatomy, stimulation-induced side effects of nearby structures, the lead trajectory, and basic concepts of extracellular stimulation. In this chapter the basic biophysical, electrochemical, and neurophysiological concepts pertinent to extracellular stimulation are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnew WF, McCreeery DB, Yuen TG, Bullara LA (1990) Effects of prolonged electrical stimulation of the central nervous system. In: Agnew WF, McCreery DB (eds) Neural prostheses: fundamental studies. Prentice Hall, Englewood Cliffs, pp 226–252

    Google Scholar 

  • Bagshaw EV, Evans MH (1976) Measurement of current spread from microelectrodes when stimulating within the nervous system. Exp Brain Res 25:391–400

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21(3):1033–1038

    PubMed  CAS  Google Scholar 

  • Butson CR, Maks CB, McIntyre CC (2006) Sources and effects of electrode impedance during deep brain stimulation. Clin Neurophysiol 117:447–454

    Article  PubMed  Google Scholar 

  • Coenen VA, Honey CR, Hurwitz T, Rahman AA, McMaster J, Bürgel U, Mädler B (2009) Medial forebrain bundle stimulation as a pathophysiological mechanism for hypomania in subthalamic nucleus deep brain stimulation for Parkinson’s disease. Neurosurgery 64(6):1106–1114; discussion 1114–1115

    Google Scholar 

  • Coenen VA, Allert N, Mädler B (2011a) A role of diffusion tensor imaging fiber tracking in deep brain stimulation surgery: DBS of the dentato-rubro-thalamic tract (drt) for the treatment of therapy-refractory tremor. Acta Neurochir (Wien) 153(8):1579–1585

    Article  Google Scholar 

  • Coenen VA, Mädler B, Schiffbauer H, Urbach H, Allert N (2011b) Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression. Neurosurgery 68(4):1069–1075; discussion 1075–1076. Erratum in: Neurosurgery 68(6):E1780–E1781

    Google Scholar 

  • Coenen VA, Panksepp J, Hurwitz TA, Urbach H, Mädler B (2012) Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): diffusion tensor imaging of two major subcortical pathways that may promote a dynamic balance of opposite affects relevant for understanding depression. J Neuropsychiatry Clin Neurosci 24:1–14

    Article  Google Scholar 

  • Deli G, Balas I, Nagy F, Balazs E, Janszky J, Komoly S, Kovacs N (2011) Comparison of the efficacy of unipolar and bipolar electrode configuration during subthalamic deep brain stimulation. Parkinsonism Relat Disord 17:50–54

    Article  PubMed  Google Scholar 

  • Durand DM (2000) Electric stimulation of excitable tissue. In Bronzino JD (ed) The biomedical engineering handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Eusebio A, Thevathasan W, Doyle Gaynor L, Pogosyan A, Bye E, Foltynie T, Zrinzo L, Ashkan K, Aziz T, Brown P (2011) Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry 82(5):569–573

    Google Scholar 

  • Grill WM (2005) Safety considerations for deep brain stimulation: review and analysis. Expert Rev Med Devices 2(4):409–420

    Article  PubMed  Google Scholar 

  • Holsheimer J (2003) Principles of neurostimulation. In: Simpson BA (ed) Pain research and clinical management. Elsevier, Amsterdam

    Google Scholar 

  • Kuhn AA, Williams D, Kupsch A, Limousin P, Hariz M, Schneider G, Yarrow K, Brown P (2004) Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain 127:735–746

    Article  PubMed  Google Scholar 

  • Kuncel AM, Grill WM (2004) Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol 115:2431–2441

    Article  PubMed  Google Scholar 

  • Lega BC, Kahana MJ, Jaggi J, Baltuch GH, Zaghloul K (2011) Neuronal and oscillatory activity during reward processing in the human ventral striatum. NeuroReport 22:795–800

    PubMed  Google Scholar 

  • Lilly JC, Hughes JR, Alvord EC, Galkin TW (1955) Brief, noninjurious electric waveform for stimulation of the brain. Science 121:468–469

    Article  PubMed  CAS  Google Scholar 

  • Mädler B, Coenen VA (2012) Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue. AJNR Am J Neuroradiol 33(6):1072–1080

    Article  PubMed  Google Scholar 

  • McCracken CB, Grace AA (2009) Nucleus accumbens deep brain stimulation produces region-specific alterations in local field potential oscillations and evoked responses in vivo. J Neurosci 29(16):5354–5363

    Article  PubMed  CAS  Google Scholar 

  • McCreery DB, Agnew WF, Yuen TG, Bullara L (1990) Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng 37(10):996–1001

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CC, Grill WM (1999) Excitaiton of central nervous system neuron by nonuniform electric fields. Biophysical J 76:878–888

    Article  CAS  Google Scholar 

  • Merrill DR, Bikson M, Jefferys JG (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141:171–198

    Article  PubMed  Google Scholar 

  • Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98(3):417–440

    Article  PubMed  Google Scholar 

  • Rattay F (1989) Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng 36(7):676–682

    Article  PubMed  CAS  Google Scholar 

  • Rizzone M, Lanotte M, Bergamasco B, Tavella A, Torre E, Faccani G, Melcarne A, Lopiano L (2001) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatry 71:215–219

    Article  PubMed  CAS  Google Scholar 

  • Rushton WA (1927) The effect upon the threshold for nervous excitation of the length of nerve exposed and the angle between current and nerve. J Physiol 63:357–377

    PubMed  CAS  Google Scholar 

  • Shannon RV (1992) A model of safe levels for electrical stimulation. IEEE Trans Biomed Eng 39(4):424–426

    Article  PubMed  CAS  Google Scholar 

  • Schwan HP (1992) Linear and nonlinear electrode polarization and biological materials. Ann Biomed Eng 20(3):269–288

    Article  PubMed  CAS  Google Scholar 

  • Tehovnik EJ (1996) Electrical stimulation of neural tissue to evoke behavioral responses. J Neurosci Methods 65(1):1–17

    Article  PubMed  CAS  Google Scholar 

  • Weiss G (1901) Sur la possibilite de rendre comparables entre eux les appareils servant a l’excitation electrique. Arch Ital Biol 35:413–446

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. L. H. Gielen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gielen, F.L.H., Molnar, G.C. (2012). Basic Principles of Deep Brain Stimulation. In: Denys, D., Feenstra, M., Schuurman, R. (eds) Deep Brain Stimulation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30991-5_1

Download citation

Publish with us

Policies and ethics