Advertisement

Neurotransmitter Release During Deep Brain Stimulation

  • Osama A. Abulseoud
  • Emily J. Knight
  • Kendall H. Lee
Chapter

Abstract

Deep brain stimulation (DBS) is currently under investigation for treatment of a number of psychiatric indications, including obsessive–compulsive disorder, treatment-resistant depression, and Tourette’s syndrome. Despite its clinical efficacy, the mechanism of action of DBS is incompletely understood. Contrary to the previously proposed mechanism of local inhibition of neural elements at the stimulation site, recent studies have argued that DBS may also cause excitation of efferent target neurons and subsequent changes in neural network activity and neurotransmitter release at various nodes within the neural network. However, the necessary link between symptom change and a corresponding change in neurotransmitters has yet to be firmly established and will be essential to advance our understanding of psychiatric neurobiology. In this chapter, we briefly review the growing scientific evidence in regard to neurotransmitter release as a possible mechanism of action of DBS and the potential impact on neuropsychiatric applications.

Keywords

Deep Brain Stimulation Essential Tremor Dorsal Raphe Nucleus Deep Brain Stimulation Surgical Procedure Deep Brain Stimulation Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abelson JL, Curtis GC, Sagher O, Albucher RC, Harrigan M, Taylor SF, Martis B, Giordani B (2005) Deep brain stimulation for refractory obsessive-compulsive disorder. Biol Psychiatry 57(5):510–516PubMedCrossRefGoogle Scholar
  2. Agnesi F, Tye SJ, Bledsoe JM, Griessenauer CJ, Kimble CJ, Sieck GC, Bennet KE, Garris PA, Blaha CD, Lee KH (2009) Wireless instantaneous neurotransmitter concentration system-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring. J Neurosurg 111(4):701–711PubMedCrossRefGoogle Scholar
  3. Agnesi F, Blaha CD, Lin J, Lee KH (2010) Local glutamate release in the rat ventral lateral thalamus evoked by high-frequency stimulation. J Neural Eng 7(2):26009PubMedCrossRefGoogle Scholar
  4. Babiloni C, Pizzella V, Gratta CD, Ferretti A, Romani GL (2009) Fundamentals of electroencefalography, magnetoencefalography, and functional magnetic resonance imaging. Int Rev Neurobiol 86:67–80PubMedCrossRefGoogle Scholar
  5. Baker KB, Kopell BH, Malone D, Horenstein C, Lowe M, Phillips MD, Rezai AR (2007) Deep brain stimulation for obsessive-compulsive disorder: using functional magnetic resonance imaging and electrophysiological techniques: technical case report. Neurosurgery 61(5 Suppl 2):E367–E368; discussion E368Google Scholar
  6. Bekar L, Libionka W, Tian GF, Xu Q, Torres A, Wang X, Lovatt D, Williams E, Takano T, Schnermann J, Bakos R, Nedergaard M (2008) Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med 14(1):75–80PubMedCrossRefGoogle Scholar
  7. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50(1–6):344–346PubMedGoogle Scholar
  8. Benabid AL, Koudsie A, Benazzouz A, Fraix V, Ashraf A, Le Bas JF, Chabardes S, Pollak P (2000) Subthalamic stimulation for Parkinson’s disease. Arch Med Res 31(3):282–289PubMedCrossRefGoogle Scholar
  9. Benazzouz A, Gao DM, Ni ZG, Piallat B, Bouali-Benazzouz R, Benabid AL (2000) Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience 99(2):289–295PubMedCrossRefGoogle Scholar
  10. Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85(4):1351–1356PubMedGoogle Scholar
  11. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B, Axmacher N, Lemke M, Cooper-Mahkorn D, Cohen MX, Brockmann H, Lenartz D, Sturm V, Schlaepfer TE (2010) Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 67(2):110–116PubMedCrossRefGoogle Scholar
  12. Blaha CD, Lester DB, Ramsson ES, Lee KH, Garris PA (2008) Striatal dopamine release evoked by subthalamic stimulation in intact and 6-OHDA-lesioned rats: relevance to deep brain stimulation in Parkinson’s disease. In: Proceedings of the 12th international conference on In Vivo methods, University of British Columbia, Vancouver, Canada, pp 395–397Google Scholar
  13. Bledsoe JM, Kimble CJ, Covey DP, Blaha CD, Agnesi F, Mohseni P, Whitlock S, Johnson DM, Horne A, Bennet KE, Lee KH, Garris PA (2009) Development of the wireless instantaneous neurotransmitter concentration system for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry. J Neurosurg 111(4):712–723PubMedCrossRefGoogle Scholar
  14. Borland LM, Shi G, Yang H, Michael AC (2005) Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat. J Neurosci Methods 146(2):149–158PubMedCrossRefGoogle Scholar
  15. Bruet N, Windels F, Bertrand A, Feuerstein C, Poupard A, Savasta M (2001) High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats. J Neuropathol Exp Neurol 60(1):15–24PubMedGoogle Scholar
  16. Brundege JM, Dunwiddie TV (1997) Role of adenosine as a modulator of synaptic activity in the central nervous system. Adv Pharmacol 39:353–391PubMedCrossRefGoogle Scholar
  17. Ceballos-Baumann AO (2003) Functional imaging in Parkinson’s disease: activation studies with PET, fMRI and SPECT. J Neurol 250(Suppl 1):I15–I23PubMedCrossRefGoogle Scholar
  18. Cechova S, Venton BJ (2008) Transient adenosine efflux in the rat caudate-putamen. J Neurochem 105(4):1253–1263PubMedCrossRefGoogle Scholar
  19. Clapp-Lilly KL, Roberts RC, Duffy LK, Irons KP, Hu Y, Drew KL (1999) An ultrastructural analysis of tissue surrounding a microdialysis probe. J Neurosci Methods 90(2):129–142PubMedCrossRefGoogle Scholar
  20. Covey DP, Garris PA (2009) Using fast-scan cyclic voltammetry to evaluate striatal dopamine release elicited by subthalamic nucleus stimulation. Conf Proc IEEE Eng Med Biol Soc 2009:3306–3309PubMedGoogle Scholar
  21. Dawson LA, Nguyen HQ, Smith DL, Schechter LE (2002) Effect of chronic fluoxetine and WAY-100635 treatment on serotonergic neurotransmission in the frontal cortex. J Psychopharmacol 16(2):145–152PubMedCrossRefGoogle Scholar
  22. Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64(3):327–337PubMedCrossRefGoogle Scholar
  23. Eidelberg D, Edwards C (2000) Functional brain imaging of movement disorders. Neurol Res 22(3):305–312PubMedGoogle Scholar
  24. Falowski SM, Sharan A, Reyes BA, Sikkema C, Szot P, Van Bockstaele EJ (2011) An Evaluation of Neuroplasticity and Behavior Following Deep Brain Stimulation of the Nucleus Accumbens in an Animal Model of Depression. Neurosurgery 69(6):1281–1290PubMedCrossRefGoogle Scholar
  25. Garcia L, D’Alessandro G, Bioulac B, Hammond C (2005) High-frequency stimulation in Parkinson’s disease: more or less? Trends Neurosci 28(4):209–216PubMedCrossRefGoogle Scholar
  26. Grafton ST, DeLong M (1997) Tracing the brain’s circuitry with functional imaging. Nat Med 3(6):602–603PubMedCrossRefGoogle Scholar
  27. Greenberg BD, Malone DA, Friehs GM, Rezai AR, Kubu CS, Malloy PF, Salloway SP, Okun MS, Goodman WK, Rasmussen SA (2006) Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology 31(11):2384–2393PubMedCrossRefGoogle Scholar
  28. Griessenauer CJ, Chang SY, Tye SJ, Kimble CJ, Bennet KE, Garris PA, Lee KH (2010) Wireless Instantaneous Neurotransmitter Concentration System: electrochemical monitoring of serotonin using fast-scan cyclic voltammetry—a proof-of-principle study. J Neurosurg 113(3):656–665PubMedCrossRefGoogle Scholar
  29. Hamani C, Diwan M, Macedo CE, Brandao ML, Shumake J, Gonzalez-Lima F, Raymond R, Lozano AM, Fletcher PJ, Nobrega JN (2010) Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol Psychiatry 67(2):117–124PubMedCrossRefGoogle Scholar
  30. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23(5):1916–1923PubMedGoogle Scholar
  31. Hershey T, Revilla FJ, Wernle AR, McGee-Minnich L, Antenor JV, Videen TO, Dowling JL, Mink JW, Perlmutter JS (2003) Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology 61(6):816–821PubMedCrossRefGoogle Scholar
  32. Jech R, Urgosik D, Tintera J, Nebuzelsky A, Krasensky J, Liscak R, Roth J, Ruzicka E (2001) Functional magnetic resonance imaging during deep brain stimulation: a pilot study in four patients with Parkinson’s disease. Mov Disord 16(6):1126–1132PubMedCrossRefGoogle Scholar
  33. Johnson MD, Miocinovic S, McIntyre CC, Vitek JL (2008) Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 5(2):294–308PubMedCrossRefGoogle Scholar
  34. Kita H, Tachibana Y, Nambu A, Chiken S (2005) Balance of monosynaptic excitatory and disynaptic inhibitory responses of the globus pallidus induced after stimulation of the subthalamic nucleus in the monkey. J Neurosci 25(38):8611–8619PubMedCrossRefGoogle Scholar
  35. Lee KH, Blaha CD, Harris BT, Cooper S, Hitti FL, Leiter JC, Roberts DW, Kim U (2006) Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson’s disease. Eur J Neurosci 23(4):1005–1014PubMedCrossRefGoogle Scholar
  36. Lujan JL, Chaturvedi A, McIntyre CC (2008) Tracking the mechanisms of deep brain stimulation for neuropsychiatric disorders. Front Biosci 13:5892–5904PubMedCrossRefGoogle Scholar
  37. Maciunas RJ, Maddux BN, Riley DE, Whitney CM, Schoenberg MR, Ogrocki PJ, Albert JM, Gould DJ (2007) Prospective randomized double-blind trial of bilateral thalamic deep brain stimulation in adults with Tourette syndrome. J Neurosurg 107(5):1004–1014PubMedCrossRefGoogle Scholar
  38. Magarinos-Ascone C, Pazo JH, Macadar O, Buno W (2002) High-frequency stimulation of the subthalamic nucleus silences subthalamic neurons: a possible cellular mechanism in Parkinson’s disease. Neuroscience 115(4):1109–1117PubMedCrossRefGoogle Scholar
  39. Malone DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, Rauch SL, Rasmussen SA, Machado AG, Kubu CS, Tyrka AR, Price LH, Stypulkowski PH, Giftakis JE, Rise MT, Malloy PF, Salloway SP, Greenberg BD (2009) Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry 65(4):267–275PubMedCrossRefGoogle Scholar
  40. Maurice N, Thierry AM, Glowinski J, Deniau JM (2003) Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus. J Neurosci 23(30):9929–9936PubMedGoogle Scholar
  41. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660PubMedCrossRefGoogle Scholar
  42. McCracken CB, Grace AA (2007) High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. J Neurosci 27(46):12601–12610PubMedCrossRefGoogle Scholar
  43. McIntyre CC, Grill WM (1998) Sensitivity analysis of a model of mammalian neural membrane. Biol Cybern 79(1):29–37PubMedCrossRefGoogle Scholar
  44. McIntyre CC, Grill WM, Sherman DL, Thakor NV (2004a) Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 91(4):1457–1469PubMedCrossRefGoogle Scholar
  45. McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL (2004b) Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115(3):589–595PubMedCrossRefGoogle Scholar
  46. McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL (2004c) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115(6):1239–1248Google Scholar
  47. Meissner W, Harnack D, Reese R, Paul G, Reum T, Ansorge M, Kusserow H, Winter C, Morgenstern R, Kupsch A (2003) High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J Neurochem 85(3):601–609PubMedCrossRefGoogle Scholar
  48. Miocinovic S, Parent M, Butson CR, Hahn PJ, Russo GS, Vitek JL, McIntyre CC (2006) Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol 96(3):1569–1580PubMedCrossRefGoogle Scholar
  49. Mitchell ND, Baker GB (2010) An update on the role of glutamate in the pathophysiology of depression. Acta Psychiatr Scand 122(3):192–210PubMedCrossRefGoogle Scholar
  50. Nagayama H, Tsuchiyama K, Yamada K, Akiyoshi J (1991) Animal study on the role of serotonin in depression. Prog Neuropsychopharmacol Biol Psychiatry 15(6):735–744PubMedCrossRefGoogle Scholar
  51. Nestler E, Duman R (2002) Neuropsychopharmacology: the fifth generation of progress: an official publication of the American College of Neuropsychopharmacology. K. Davis, Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  52. Nichols DE, Nichols CD (2008) Serotonin receptors. Chem Rev 108(5):1614–1641PubMedCrossRefGoogle Scholar
  53. Nuttin BJ, Gabriels LA, Cosyns PR, Meyerson BA, Andreewitch S, Sunaert SG, Maes AF, Dupont PJ, Gybels JM, Gielen F, Demeulemeester HG (2003) Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder. Neurosurgery 52(6):1263–1272; discussion 1272–1264Google Scholar
  54. Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14(1):68–78PubMedCrossRefGoogle Scholar
  55. Paul G, Reum T, Meissner W, Marburger A, Sohr R, Morgenstern R, Kupsch A (2000) High frequency stimulation of the subthalamic nucleus influences striatal dopaminergic metabolism in the naive rat. NeuroReport 11(3):441–444PubMedCrossRefGoogle Scholar
  56. Phillips MD, Baker KB, Lowe MJ, Tkach JA, Cooper SE, Kopell BH, Rezai AR (2006) Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus–initial experience. Radiology 239(1):209–216PubMedCrossRefGoogle Scholar
  57. Phillis JW (2004) Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling, and KATP channels. Crit Rev Neurobiol 16(4):237–270PubMedCrossRefGoogle Scholar
  58. Poewe W (2009) Treatments for Parkinson disease–past achievements and current clinical needs. Neurology 72(7 Suppl):S65–S73PubMedCrossRefGoogle Scholar
  59. Remple MS, Sarpong Y, Neimat JS (2008) Frontiers in the surgical treatment of Parkinson’s disease. Expert Rev Neurother 8(6):897–906PubMedCrossRefGoogle Scholar
  60. Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N, Joe AY, Kreft M, Lenartz D, Sturm V (2008) Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33(2):368–377PubMedCrossRefGoogle Scholar
  61. Sestini S, Ramat S, Formiconi AR, Ammannati F, Sorbi S, Pupi A (2005) Brain networks underlying the clinical effects of long-term subthalamic stimulation for Parkinson’s disease: a 4-year follow-up study with rCBF SPECT. J Nucl Med 46(9):1444–1454PubMedGoogle Scholar
  62. Shon YM, Chang SY, Tye SJ, Kimble CJ, Bennet KE, Blaha CD, Lee KH (2010a) Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle. J Neurosurg 112(3):539–548PubMedCrossRefGoogle Scholar
  63. Shon YM, Lee KH, Goerss SJ, Kim IY, Kimble C, Van Gompel JJ, Bennet K, Blaha CD, Chang SY (2010b) High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of human DBS neurosurgery. Neurosci Lett 475(3):136–140PubMedCrossRefGoogle Scholar
  64. Smith ID, Grace AA (1992) Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity. Synapse 12(4):287–303PubMedCrossRefGoogle Scholar
  65. Steeves TD, Ko JH, Kideckel DM, Rusjan P, Houle S, Sandor P, Lang AE, Strafella AP (2010) Extrastriatal dopaminergic dysfunction in Tourette syndrome. Ann Neurol 67(2):170–181PubMedCrossRefGoogle Scholar
  66. van Eijsden P, Hyder F, Rothman DL, Shulman RG (2009) Neurophysiology of functional imaging. Neuroimage 45(4):1047–1054PubMedCrossRefGoogle Scholar
  67. Van Laere K, Nuttin B, Gabriels L, Dupont P, Rasmussen S, Greenberg BD, Cosyns P (2006) Metabolic imaging of anterior capsular stimulation in refractory obsessive-compulsive disorder: a key role for the subgenual anterior cingulate and ventral striatum. J Nucl Med 47(5):740–747PubMedGoogle Scholar
  68. Vernaleken I, Kuhn J, Lenartz D, Raptis M, Huff W, Janouschek H, Neuner I, Schaefer WM, Grunder G, Sturm V (2009) Bithalamical deep brain stimulation in Tourette syndrome is associated with reduction in dopaminergic transmission. Biol Psychiatry 66(10):e15–e17PubMedCrossRefGoogle Scholar
  69. Walker RH, Koch RJ, Moore C, Meshul CK (2009) Subthalamic nucleus stimulation and lesioning have distinct state-dependent effects upon striatal dopamine metabolism. Synapse 63(2):136–146PubMedCrossRefGoogle Scholar
  70. Willner P (1985) Antidepressants and serotonergic neurotransmission: an integrative review. Psychopharmacology (Berl) 85(4):387–404CrossRefGoogle Scholar
  71. Windels F, Bruet N, Poupard A, Feuerstein C, Bertrand A, Savasta M (2003) Influence of the frequency parameter on extracellular glutamate and gamma-aminobutyric acid in substantia nigra and globus pallidus during electrical stimulation of subthalamic nucleus in rats. J Neurosci Res 72(2):259–267PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Osama A. Abulseoud
    • 1
  • Emily J. Knight
    • 2
  • Kendall H. Lee
    • 3
    • 4
  1. 1.Department of Psychiatry and PsychologyMayo ClinicRochesterUSA
  2. 2.Mayo Graduate SchoolRochesterUSA
  3. 3.Department of Neurosurgery and PhysiologyMayo ClinicRochesterUSA
  4. 4.Neuroengineering LaboratoryMayo ClinicRochesterUSA

Personalised recommendations