Applying the Techniques on Materials I

  • Turkan Yurdun
  • Emre Dolen
  • Recep Karadag
  • Carole Mathe
  • Andreas K. Tsakalof
  • Kyriaki A. Bairachtari
  • Evangelia A. Varella
  • A. Spinella
  • D. Capitani
  • S. Bastone
  • C. Di Stefano
  • E. Caponetti
  • Eleni Pavlidou
  • Maria Kyranoudi
  • Leopold Puchinger
  • Friedrich Sauter
  • Andreas Gössl
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 79)

Abstract

The knowledge of the composition of the natural dye mixtures gives hints on appropriate procedures for restoration strategies. Identification of the dyes used, the establishment of their biological source, how they have been prepared, how these historical textiles were made, can provide important information. The dyestuffs used up to nineteenth century were either of plant (weld, madder, indigo, etc.) or animal origin (cochineal, shellfish, etc.) and belonged to various chemical types, such as flavonoids (yellow), anthraquinones (red) and indigoids (blue and violet). In this study microsamples (19) were examined from 11 Mevlana’s kaftans, dervishs’ dresses and dated from the thirteenth century. The objects belong to the collection of the Mevlana Museum in Konya, Turkey. The analysis of dyestuffs from historical object with microdestructive method as High Performance Liquid Chromatography (HPLC) with diode-array detector was performed. Historical samples (0.5–1 mg) were used as extracted with the HCl/methanol/water (2:1:1) extraction method. In this work, colour measurements of the cotton fabric samples dyed with indigotin and ellagic acid were performed by CIELab system.

Keywords

High Performance Liquid Chromatography High Pressure Liquid Chromatography Thermal Desorption Ellagic Acid Binding Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schweppe H (1979) Identification of dyes on old textiles. J Am Inst Conserv 19(1):14–23CrossRefGoogle Scholar
  2. 2.
    Wouters J (1985) High-performance liquid chromatography anthraquinones: analysis of plant and insect extracts and dyed textiles. Stud Conserv 30:119–128CrossRefGoogle Scholar
  3. 3.
    Wouters J, Verhecken A (1989) The coccid insect dyes: HPLC and computerized diode-array analysis of dyed yarn. Stud Conserv 34:189–200CrossRefGoogle Scholar
  4. 4.
    Wouters J, Rosario-Chirinos N (1992) Dye analysis of pre-Columbian Peruvian textiles with high-performance liquid chromatography and diode-array detection. J Am Inst Conserv 31:237–255CrossRefGoogle Scholar
  5. 5.
    Koren ZC (1994) HPLC analysis of the natural scale insect, madder and indigoid. J Soc Dyers Colour 110:273–277CrossRefGoogle Scholar
  6. 6.
    Koren ZC (1995) An efficient HPLC analysis scheme for plant and animal red, blue and purple dyes. Dyes Hist Archaeol 13:27–37Google Scholar
  7. 7.
    Surowiec I, Quye A, Trojanowicz M (2006) Liquid chromatography determination of natural dyes in extracts from historical Scottish textiles excavated from peat bogs. J Chromatogr A 1112:209–217CrossRefGoogle Scholar
  8. 8.
    Orska-Gawryś J, Surowiec I, Kehl J, Rejniak H, Urbaniak-Walczak K, Trojanowicz M (2003) Identification of natural dyes in archeological Coptic textiles by liquid chromatography with diode-array detection. J Chromatogr A 989:239–248CrossRefGoogle Scholar
  9. 9.
    Karapanagiotis I, Lakka A, Valianou L, Chryssoulakis Y (2008) High-performance liquid chromatographic determination of colouring matters in historical garments from the Holy Mountain of Athos. Microchim Acta 160(4):477–483CrossRefGoogle Scholar
  10. 10.
    Karapanagiotis I, Mantzouris D, Chryssoulakis Y, Saadeh HA, Alawi MA, Mubarek MS, Karadag R, Yurdun T, Alsaad Z, Abdel-Kareem O, Puchinger L, Sauter F (2009) Inter-laboratory chemical study of natural materials from the historical Wiesner collection. JJC 4(2):195–208Google Scholar
  11. 11.
    Deveoglu O, Karadag R, Yurdun T (2009) Preparation and HPLC analysis of the natural pigments obtained from Buckthorn (Rhamnus petiolaris Boiss) dye plants. JJC 4(4):377–385Google Scholar
  12. 12.
    Karadag R, Torgan E, Yurdun T (2010) Formation and HPLC analysis of the natural lake pigment obtained from Madder (Rubia tinctorum L.). Rev Anal Chem 29(1):1–12CrossRefGoogle Scholar
  13. 13.
    Yurdun T, Karadag R, Dolen E, Mubarak MS (2011) Identification of natural yellow, blue, green and black dyes in 15th–17th centuries Ottoman silk and wool textiles by HPLC with diode array detection. Rev Anal Chem 30:153–164CrossRefGoogle Scholar
  14. 14.
    Valianou L, Karapanagiotis I, Chryssoulakis Y (2009) Comparison of extraction methods for the analysis of natural dyes in historical textiles by high-performance liquid chromatography. Anal Bioanal Chem 395(7):2175–2189CrossRefGoogle Scholar
  15. 15.
    Mantzouris D, Karapanagiotis I, Valianou L, Panayiotou C (2011) HPLC-DAD-MS analysis of dyes identified in textiles from Mount Athos. Anal Bioanal Chem 399(9):3065–3079CrossRefGoogle Scholar
  16. 16.
    Puchalska M, Połeć-Pawlak K, Zadrozna I, Hryszko H, Jarosz M (2004) Identification of indigoid dyes in natural organic pigments used in historical art objects by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry. J Mass Spectrom 39(12):1441–1449CrossRefGoogle Scholar
  17. 17.
    Pawlak K, Puchalska M, Miszczak A, Rosłoniec E, Jarosz M (2006) Blue natural organic dyestuffs—from textile dyeing to mural painting. Separation and characterization of coloring matters present in elderberry, logwood and indigo. J Mass Spectrom 41(5):613–622CrossRefGoogle Scholar
  18. 18.
    Zhang X, Good I, Laursen R (2008) Characterization of dyes in ancient textiles from Xinjiang. J Archaeol Sci 35:1095–1103CrossRefGoogle Scholar
  19. 19.
    Szostek B, Orska-Gawryś J, Surowiec I, Trojanowicz M (2003) Investigation of natural dyes occurring in historical Coptic textiles by high-performance liquid chromatography with UV-Vis and mass spectrometric detection. J Chromatogr A 1012:179–192CrossRefGoogle Scholar
  20. 20.
    Balakina GG, Vasiliev VG, Karpova EV, Mamatyuk VI (2006) HPLC and molecular spectroscopic investigations of the red dye obtained from an ancient Pazyryk textile. Dyes Pigment 71:54–60CrossRefGoogle Scholar
  21. 21.
    Marques R, Sousa MM, Oliveira MC, Melo MJ (2009) Characterization of weld (Reseda luteola L.) and spurge flax (Daphne gnidium L.) by high-performance liquid chromatography-diode array detection-mass spectrometry in Arraiolos historical textiles. J Chromatogr A 1216(9):1395–1402CrossRefGoogle Scholar
  22. 22.
    Blanc R, Espejo T, López-Montes A, Torres D, Crovetto G, Navalón A, Vílchez JL (2006) Sampling and identification of natural dyes en historical maps and drawings by liquid chromatography with diode-array detection. J Chromatogr A 1122:105–113CrossRefGoogle Scholar
  23. 23.
    Sist. Daniilia, Minopoulou E, Andrikopoulos KS, Karapanagiotis I, Kourouklis GA (2008) Evaluating a Cumaean Sibyl:Domenichino or later? A multi analytical approach. Anal Chim Acta 611:239–249Google Scholar
  24. 24.
    Karapanagiotis I, sist. Daniilia, Tsakalof A, Chryssoulakis Y (2005) Identification of red natural dyes in Post-Byzantine icons by HPLC. J Liq Chromatogr R T 28:739–749Google Scholar
  25. 25.
    Karapanagiotis I, Valianou Y, sist. Daniilia, Chryssoulakis Y (2007) Organic dyes in Byzantine and post-Byzantine icons from Chalkidiki (Greece). J Cult Herit 8:294–298Google Scholar
  26. 26.
    Valianou L, Wei S, Mubarak MS, Farmakalidis H, Rosenberg E, Stassinopoulos S, Karapanagiotis I (2011) Identification of organic materials in icons of the Cretan School of iconography. J Archaeol Sci 38(2):246–254CrossRefGoogle Scholar
  27. 27.
    Halpine SM (1996) An improved dye and lake pigment analysis method for high-performance liquid chromatography and diode-array detector. Stud Conserv 41:76–94CrossRefGoogle Scholar
  28. 28.
    Ford BL (1992) Monitoring colour change in textiles on display. Stud Conserv 37(1):1–11CrossRefGoogle Scholar
  29. 29.
    Cristea D, Vilarem G (2006) Improving light fastness of natural dyes on cotton yarn. Dyes Pigment 70:238–245CrossRefGoogle Scholar
  30. 30.
    Cardon D (2007) Natural dyes-sources, tradition, technology and science. Archetype, LondonGoogle Scholar
  31. 31.
    Karapanagiotis I, Theologou J, Lakka A, Ozoline A, Panayiotou C (2011) Investigation of the colouring materials of Fustat carpet fragments. Archaeometry 53(3):587–599 Google Scholar
  32. 32.
    Kumar JK, Sinha AK (2004) Resurgence of natural colourants: a holistic view. Nat Prod Lett 18(1):59–84Google Scholar
  33. 33.
    González M, Lobo MG, Méndez J, Carnero A (2005) Detection of colour adulteration in cochineals by spectrophotometric determination of yellow and red pigment groups. Food Control 16:105–112CrossRefGoogle Scholar
  34. 34.
    Chengaiah B, Rao KM, Kumar KM, Alagusundaram M, Chetty CM (2010) Medicinal importance of natural dyes—a review. Int J PharmTech Res 2(1):144–154Google Scholar
  35. 35.
    Septhum C, Rattanaphani V, Rattanaphani S (2007) UV–Vis spectroscopic study of natural dyes with alum as a mordant. Suranaree J Sci Technol 14(1):91–97Google Scholar
  36. 36.
    Surowiec I, Orska-Gawryś J, Biesaga M, Trojanowicz M, Hutta M, Halko R, Urbaniak-Walczak K (2003) Identification of natural dyestuff in archeological coptic textiles by HPLC with fluorescence detection. Anal Lett 36(6):1211–1229CrossRefGoogle Scholar
  37. 37.
    Cardon D (2007) Natural dyes. Archetype Publications, LondonGoogle Scholar
  38. 38.
    Ferreira ESB, Hulme AN, McNab H, Quye A (2004) The natural constituents of historical textile dyes. Chem Soc Rev 33:329–336CrossRefGoogle Scholar
  39. 39.
    Karadag R (2007) Dogal Boyamacilik. T.C. Kultur ve Turizm Bakanligi, AnkaraGoogle Scholar
  40. 40.
    De Santis D, Moresi M (2007) Production of alizarin extracts from Rubia tinctorum and assessment of their dyeing properties. Ind Crops Prod 26:151–162CrossRefGoogle Scholar
  41. 41.
    Deveoglu O, Torgan E, Karadag R (2010) Identification by HPLC-DAD of dyestuffs in the natural pigments produced with Al+3, Fe+2 and Sn+2 mordant metals from cochineal (Dactylopius coccus Costa) and walloon oak (Quercus ithaburensis Decaisne). Asian J Chem 22(9):7021–7030Google Scholar
  42. 42.
    Karadag R, Dolen E (2008) Identification of natural dyes in historical textiles by liquid chromatography. Chemistry and Conservation Science, Proceeding: second residential summer school Palermo (Italy)Google Scholar
  43. 43.
    Deveoglu O, Karadag R, Yurdun T (2011) Qualitative HPLC determination of main anthraquinone and lake pigment contents from Dactylopius coccus dye insect. Chem Nat Compd 47(1):103–104CrossRefGoogle Scholar
  44. 44.
    Schweppe H (1993) Handbuch der Naturfarbstoff. Ecomed, LandsbergGoogle Scholar
  45. 45.
    Mikropoulou E, Tsatsaroni E, Varella EA (2009) Revival of traditional European dyeing techniques yellow and red colorants. J Cult Heritage 10:447–457CrossRefGoogle Scholar
  46. 46.
    Zarkogianni M, Mikropoulou E, Varella EA (2010) Colour and fastness of natural dyes: revival of traditional dyeing techniques. Coloring Technol 127:18–27CrossRefGoogle Scholar
  47. 47.
    Wouters J (1985) High-performance liquid chromatography anthraquinones: analysis of plant and insect extracts and dyed textiles. Stud Conserv 30:119–128CrossRefGoogle Scholar
  48. 48.
    Wouters J, Verhecken A (1989) The coccid insect dyes: HPLC and computerized diode-array analysis of dyed yarn. Stud Conserv 34:189–200CrossRefGoogle Scholar
  49. 49.
    Wouters J, Verhecken A (1989) The scale insect dyes (Homoptera:Coccoidea): species recognition by HPLC and diode-array analysis of the dyestuffs. Annales de la Sociét Entomologique de Française 25(4):393–410Google Scholar
  50. 50.
    Halpine SM (1996) An improved dye and lake pigment analysis method for high-performance liquid chromatography and diode-array detector. Stud Conserv 41:76–94CrossRefGoogle Scholar
  51. 51.
    Karapanagiotis I, Daniilia S, Tsakalof A, Chryssoulakis Y (2005) Identification of red natural dyes in post-Byzantine icons by HPLC. J Liq Chromatogr Relat Technol 28:739–749CrossRefGoogle Scholar
  52. 52.
    Karapanagiotis I, Mantzouris D, Chryssoulakis Y, Saadeh HA, Alawi MA, Mubarak MS, Karadag R, Yurdun T, AlSaad Z, Abdel-Kareem O, Puchinger L, Sauter F (2009) Inter-laboratory chemical study of natural materials from the historical Wiesner collection. Jordan J Chem 4(2):195Google Scholar
  53. 53.
    Deveoglu O, Karadag R, Yurdun T (2009) Preparation and HPLC analysis of the natural pigments obtained from buckthorn (Rhamnus petiolaris Boiss) dye plants. Jordan J Chem 4(4):377–385Google Scholar
  54. 54.
    Deveoglu O, Torgan E, Karadag R (2010) Characterization of colouring matters by HPLC-DAD and colour measurements, preparation of lake pigments with Ararat kermes (Porphyrophora hameli Brand). Jordan J Chem 5(3):307–315Google Scholar
  55. 55.
    Deveoglu O, Sahinbaskan BY, Torgan E, Karadag R (2011) Dyeing properties and analysis by RP-HPLC-DAD of silk fibers dyed with weld (Reseda luteola L.) and walloon oak (Quercus ithaburensis Decaisne). Asian J Chem 23(12):5441–5446Google Scholar
  56. 56.
    Pollard A, Heron C (1996) Archaeological chemistry. The royal society of chemistry, RSC Paperbacks, CambridgeGoogle Scholar
  57. 57.
    Mills JS, White R (1994) The organic chemistry of museum objects, 2nd edn. Butterworth Heinemann, OxfordGoogle Scholar
  58. 58.
    Mathe C, Connan J, Archier P, Mouton M, Vieillescazes C (2007) Analysis of frankincense in archaeological samples by gas chromatography mass spectrometry. Anal Chim 97:433–445. doi: 10.1002/adic.200790029 CrossRefGoogle Scholar
  59. 59.
    Mathe C, Culioli G, Archier P, Vieillescazes C (2004) High performance liquid chromatographic analysis of triterpenoids in commercial frankincense. Chromatographia 60:493–499CrossRefGoogle Scholar
  60. 60.
    Mathe C, Archier P, Nehmé L, Vieillescazes C (2009) Study of Nabataean organic residues from Madâ’in Sâlih, ancient Hegra by gas chromatography mass spectrometry. Archaeometry 51:629–636. doi: 10.1111/j.1475-4754.2008.00417 CrossRefGoogle Scholar
  61. 61.
    Lucas A (1989) Ancient Egyptian materials and industries. E. Arnold and Co., LondonGoogle Scholar
  62. 62.
    Forbes RJ (1993) Studies in ancient technology. Brill EJ, LeidenGoogle Scholar
  63. 63.
    de Morgan JJ (1903) Fouilles à Dashour, (I) mars juin 1894, Vienne (1895), (II) 1894–1895, VienneGoogle Scholar
  64. 64.
    Vieillescazes C, Coen S (1993) Caractérisation de quelques résines utilisées en Egypte ancienne. Stud Conserv 38:255–264CrossRefGoogle Scholar
  65. 65.
    Archier P, Vieillescazes C (2000) Characterisation of various geographical origin incense based on chemical criteria. Analusis 28:233–237CrossRefGoogle Scholar
  66. 66.
    Martin P, Achier P, Vieillescazes C, Pistre MS (2001) HPLC coupled with fluorimetric detection for the identification of natural resins in archaeological materials. Chromatographia 53:380–384CrossRefGoogle Scholar
  67. 67.
    Dev S, Misra R (1986) Handbook of terpenoids: diterpenoids, vol III. CRC, Boca RatonGoogle Scholar
  68. 68.
    Colombini MP, Modugno F (2009) Organic materials in art and archaeology. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. John Wiley and sons Google Scholar
  69. 69.
    Gough LG (1964) Conifer resin constituents. Soc Chem Ind 12:2059–2060Google Scholar
  70. 70.
    Scalarone D, Lazzari M, Chiantore O (2002) Ageing behaviour and pyrolytic characterisation of diterpenic resins used as art materials: colophony and Venice turpentine. J Anal Appl Pyrolysis 64:345–361CrossRefGoogle Scholar
  71. 71.
    Van der Berg KJ (1996) State oxidation of diterpenoid Pinaceae resins in varnish, Max lining material, 18th century resin oil paint and a recent copper resinate glaze. ICOM Committee for Conservation, 11th triennial meeting, Edinbourg, vol 2, pp 930–937Google Scholar
  72. 72.
    Marchand-Geneste N, Carpy A (2003) Theoretical study of the thermal degradation pathways of abietane skeleton diterpenoids: aromatization to retene. J Mol Struct (Theochem) 635:55–82CrossRefGoogle Scholar
  73. 73.
    Mahajan B, Taneja SC, Sethi VK, Dhar KL (1995) Two triterpenoids from Boswellia serrata gum resin. Phytochemistry 39:453–455CrossRefGoogle Scholar
  74. 74.
    Proietti G, Strappaghetti G, Corsano S (1981) Triterpenes of Boswellia frereana. Plant Med 41:417–418CrossRefGoogle Scholar
  75. 75.
    Mills JS (1966) The gas chromatographic examination of paint media. Part 1 fatty acid composition and identification of dried oil film. Stud Conserv 11:92–107CrossRefGoogle Scholar
  76. 76.
    Colombini MP, Modugno F (2009) Organic mass spectrometry in art and archaeology. Wiley, ChichesterCrossRefGoogle Scholar
  77. 77.
    Colombini MP, Modugno F, Giacomelli M (1999) Characterisation of proteinaceous binders and drying oils in wall painting samples by gas chromatography-mass spectrometry. J Chromatogr A 846:113–124 CrossRefGoogle Scholar
  78. 78.
    Colombini MP, Modugno F, Menicagli E, Fuoco R, Giacomelli A (2000) GC-MS characterization of proteinaceous and lipid binders in UV aged polychrome artifacts. Microchem J 67:291–300CrossRefGoogle Scholar
  79. 79.
    Colombini MP, Fuoco R, Giacomelli A, Muscatello B (1998) Characterization of proteinaceous binders in wall painting samples by microwave-assisted acid hydrolysis and GC-MS determination of amino acids. Stud Conserv 43:33–41CrossRefGoogle Scholar
  80. 80.
    Tsakalof A, Bairachtari K, Sister Daniilia, Chrissoulakis I (2003) Identification of binding media in art objects: Protaton church and N.Gyzis’ paintings, 4th Symposium on Archeometry, Athens, Greece, Book of Abstracts, p 67Google Scholar
  81. 81.
    Mills JS, White R (1994) The organic chemistry of museum objects. Butterworth-Heinemann, LondonGoogle Scholar
  82. 82.
    Grattan DW (1980) The oxidative degradation of organic materials and its importance in deterioration of artifacts. J IIC-CG 4(1):17–26Google Scholar
  83. 83.
    Van den Berg JDJ (2002) Analytical chemical studies on traditional linseed oil paints. PhD Thesis, University of AmsterdamGoogle Scholar
  84. 84.
    Casoli A, Musini PC, Palla G (1996) GC/MS approach to the problem of characterizing binding media in painting. J Chromatogr A 731:237–246CrossRefGoogle Scholar
  85. 85.
    Schilling MR, Khanjian HP, Carson DM (1997) Fatty acids and glycerol content of lipids; effects of aging and solvent extraction on the composition of oil paints. Techne 5:71–78Google Scholar
  86. 86.
    Rasti F, Scott G (1980) The effects of some pigments on the Photooxidation of linseed oil-based paint media. Stud Conserv 25:145–146CrossRefGoogle Scholar
  87. 87.
    Tsakalof A, Bairachtari K, Chryssoulakis I (2006) Pitfalls in drying oils identification in art objects by gas chromatography. J Sep Sci 29:1642–1646CrossRefGoogle Scholar
  88. 88.
    Paci M, Federici C, Capitani D, Perenze N, Segre AL (1995) NMR Study Paper Carbohydr Polym 26(4):289–297CrossRefGoogle Scholar
  89. 89.
    Odlyha M, Cohen NS, Foster GM, Aliev A, Verdonck E, Grandy D (2003) Dynamic mechanical analysis (DMA), 13C solid state nmr and micro-thermomechanical studies of historical parchment. J Therm Anal Calorim 71:939–950CrossRefGoogle Scholar
  90. 90.
    Di Natale R (2003) Le Cinquecentine della Biblioteca dell’Archivio di Stato di Palermo, CRPRGoogle Scholar
  91. 91.
    Daniels V (2006) Conservation science: heritage materials. RSC Publishing, Cambridge Google Scholar
  92. 92.
    Paci M, Federici C, Capitani D, Perenze N, Segre AL (1995) NMR Study Paper. Carbohydr Polym 26:289–297CrossRefGoogle Scholar
  93. 93.
    Capitani D, Segre AL, Attanasio D, Blicharska B, Focher B, Capretti G (1996) 1H NMR relaxation study of paper as a system of cellulose and water. Tappi J 79(6):113–122Google Scholar
  94. 94.
    Capitani D, Proietti N, Ziarelli F, Segre AL (2002) NMR Study of Water-Filled Pores in one of the most widely used polymeric material: the paper. Macromolecules 35(14):5536–5543CrossRefGoogle Scholar
  95. 95.
    Vanderhart D, Atalla R (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17:1465–1472CrossRefGoogle Scholar
  96. 96.
    Capitani D, Emanuele MC, Bella J, Segre AL, Attanasio D, Focher B, Capretti G (1999) 1H NMR relaxation study of cellulose and water interaction in paper. Tappi J 82(9):117–124Google Scholar
  97. 97.
    Capitani D, Segre AL, Attanasio D, Blicharska B, Focher B, Capretti G (1996) 1H NMR relaxation study of cellulose and water interaction in paper. Tappi J 79(6):113–122Google Scholar
  98. 98.
    Larsen R (2002) Microanalysis of Parchment. Archetype Publications Ltd, LondonGoogle Scholar
  99. 99.
    Miles CA, Ghelashvili M (1999) Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibres. Biophys J 76:3243–3252CrossRefGoogle Scholar
  100. 100.
    Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053CrossRefGoogle Scholar
  101. 101.
    Massiot D, Fayon F, Capron M, King I, LeCalve’ S, Alonso B, Durand JO, Bujoli B, Gan Z, Hoatson G (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76CrossRefGoogle Scholar
  102. 102.
    Maunu S, Liitia T, Kauliomaki S, Hortling B, Sundquist J (2000) 13C CPMAS NMR investigations of cellulose polymorphs in different pulps. Cellulose 7:147–159CrossRefGoogle Scholar
  103. 103.
    Horii F, Hirai A, Kimaru R (1982) Solid-state high resolution 13C-NMR studies of regenerated cellulose samples with different crystallinities. Polym Bull 8:163–170CrossRefGoogle Scholar
  104. 104.
    Aliev AE (2005) Solid-state NMR studies of collagen-based parchments and gelatin. Biopolymers 77(4):230–245CrossRefGoogle Scholar
  105. 105.
    Ghioni C, Hilleri JC, Kennedy CJ, Aliev AE, Odlyha M, Boulton M, Wess TJ (2005) Evidence of a distinct lipid fraction in historical parchments: a potential role in degradation? J. Lipid Res 46:2726–2734CrossRefGoogle Scholar
  106. 106.
    Müller M, Murphy B, Burghammer M, Snigireva I, Riekel C, Gunneweg J, Pantos E (2008) Identification of single archaeological textile fibres from the cave of letters using synchrotron radiation microbeam diffraction and microfluorescence. Appl Phys A Mater Sci Process 83(2):183–188Google Scholar
  107. 107.
    Karatzani A, Rehren T (2006) The use of metal threads and decorations in Byzantine-Greek Orthodox ecclesiastical textiles. J Miner Metals Mater Soc 58(5):34–37CrossRefGoogle Scholar
  108. 108.
    Dimbleby GW (1967) Plants and archaeology, chapter 7: the preservation of plant materials. Royal Opera Arcade, LondonGoogle Scholar
  109. 109.
    Peacock EE (1996) Biodegradation and characterization of water-degraded archaeological textiles created for conservation research. Int Biodeterior Biodegradation 38(1):49–59CrossRefGoogle Scholar
  110. 110.
    Wild JP (2003) Textiles in archaeology. Shire Publications, BuckinghamshireGoogle Scholar
  111. 111.
    Cronyn J, Pye E, Watson J (1985) The recognition and identification of traces of organic materials in association with metal artefacts, Research Report 58. Council for British Archaeology,  Google Scholar
  112. 112.
    Caple C, Dungworth D (1997) Investigations into Waterlogged Burial Environments, Archaeological Sciences, Proceedings of a conference on the application of scientific techniques to the study of archaeology, Liverpool, July 1995. Oxbow Monograph 64:233–240Google Scholar
  113. 113.
    Tuross N, Dillehay TD (1995) The mechanism of organic preservation at Monte Verde, Chile, and one use of biomolecules in archaeological interpretation. J Field Archaeol 22:97–100Google Scholar
  114. 114.
    Chen HL, Jakes KA, Foreman DW (1998) Preservation of archaeological textiles through fibre mineralization. J Archaeol Sci 25:1015–1021CrossRefGoogle Scholar
  115. 115.
    Anheuser K, Roumeliotou M (2003) Characterisation of mineralised archaeological textile fibres through chemical staining. Conservator 27:23–33CrossRefGoogle Scholar
  116. 116.
    Janaway R (1983) Textile fibre characteristics preserved by metal corrosion: the potential of S.E.M. studies. Conservator 7:48–52CrossRefGoogle Scholar
  117. 117.
    Batigne R, Bellinger L (1953) The significance and technical analysis of ancient textiles as historical documents. Proc Am Philos Soc 97(6):670–680Google Scholar
  118. 118.
    Rodman AO (1992) Textiles and ethnicity. Latin Am Antiq 3(4):316–340CrossRefGoogle Scholar
  119. 119.
    Good I (2001) Archaeological textiles: a review of current research. Ann Rev Anthropol 30:209–226CrossRefGoogle Scholar
  120. 120.
    Cook JG (1993) Handbook of textile fibres: natural fibres, vol I. Merrow Publishing Co., WiltshireGoogle Scholar
  121. 121.
    Goffer Z (2007) Archaeological chemistry, 2nd edn. Wiley-Interscience, HobokenGoogle Scholar
  122. 122.
    EU research project Investigation. Revival and optimisation of traditional mediterranean colouring technology for the conservation of the cultural heritage (Med-COLOUR-TECH; Inco CT 2005 015406), 2006–2009Google Scholar
  123. 123.
    Hofenk de Graaff JH (2004) The colourful past-origins, chemistry and identification of natural dyestuffs. Handbook, Abegg-Stiftung. Archetype Publications Ltd. 6 Fitzroy Square London W1T 5HJ, ISBN 3-905014 (Abegg-Stiftung), ISBN 1-873132-13-1 (Archetype)Google Scholar
  124. 124.
    Puchinger L, Leichtfried D, Stachelberger H (2002) Pyrolysis capillary gas chromatography (Py-CGC) of historical parchment samples. In: Rene L (ed) Microanalysis of parchment. Archetype Publications Ltd., London, ISBN 1-873132-68-9, pp 155–158Google Scholar
  125. 125.
    Puchinger L, Sauter F, Varmuza K, Leder S (2007) Studies in organic archaeometry VII—differentiation of wood and bark pitches by pyrolysis capillary gas chromatography (Py-CGC). Anal Chim 97(7):513–525CrossRefGoogle Scholar
  126. 126.
    Moldoveanu SC (1998) Analytical pyrolysis of organic polymers-techniques and instrumentation in analytical chemistry: handbook, vol 20. Elsevier, AmsterdamGoogle Scholar
  127. 127.
    Puchinger L, Sauter F, Gössl A, Mubarak MS (2007) Pyrolysis capillary gas chromatography (Py-CGC) of Indigoid Dyestuffs. XII. Blue Danube symposium on heterocyclic chemistry, Club Tihany Hotel, Tihany (Hungary), Book of abstracts, ISBN 978-963-7067-15-0, PO-63, p 112Google Scholar
  128. 128.
    Puchinger L, Sauter F, Gössl A, Hofbauer N (2007) Chemische Identifizierung alter organischer Farbstoffe (untersucht an Farbstoffen des Indigo-Typs). Internationales ÖGUF-Symposium 2007—Zerstörungsfreie Archäologie, Aktuelle Methoden und Analysenverfahren im Einsatz der archäologischen Forschung, Naturhistorisches Museum Wien, AbstractsGoogle Scholar
  129. 129.
    Puchinger L, Sauter F, HofbauerN, Mubarak MS (2007) Studies in organic archaeometry VIII: microanalysis of indigoid dyestuffs by pyrolysis capillary gas chromatography. Petra international chemistry conference (PICC) and transmediterranean colloquium on heterocyclic chemistry (TRAMECH-5), Tafila (Jordan), Abstract book PO-52Google Scholar
  130. 130.
    Puchinger L, Sauter F,Gössl A (2009) PY-CGC/MS—a new method for analyzing organic dyestuffs. 28th meeting of dyes in history and archaeology (DHA 28). Institute of Natural Fibres & Medicinal Plants, Poznan (Polen), Book of abstracts, p 42Google Scholar
  131. 131.
    Sauter F, Puchinger L (2008) Analysis of indigo and related dyestuffs by PY-CGC/MS. 11th IbnSina international conference on pure and applied heterocyclic chemistry, Ain Shams University in Cairo (Egypt), Book of abstracts p 127, POII-21Google Scholar
  132. 132.
    Karapanagiotis I, Puchinger L, Sauter F (2009) Inter-laboratory chemical study of natural materials from the historical Wiesner collection. Jordan J Chem 4(2):195–208Google Scholar
  133. 133.
    Puchinger L, Sauter F (2008) Direct identification of indigo on textiles by means of PY-CGC/MS. 27th Meeting of dyes in history and archaeology (DHA 27), Marmara University in Istanbul (Turkey), book of abstracts, p 62; P-14Google Scholar
  134. 134.
    Puchinger L (2008) GC- and PY-CGC/MS for the determination of historical objects. In: Varella EA, Caponetti E (eds) Proceedings of the 2nd residential summer school: chemistry and conservation science 2008, Palermo. ISBN 978-88-86208-60-4, pp 199–214Google Scholar
  135. 135.
    Puchinger L, Sauter F, Gössl A, BoeskenKanold I (2009) PY-CGC/MS—a new method to identify purple on textiles and manuscripts. 13th Blue Danube symposium on heterocyclic chemistry. Program, abstract of papers, list of participants. Bled (Slovenia), p 116, PO-58Google Scholar
  136. 136.
    Puchinger L, Karapanagiotis I, Mantzouris D, Puchinger M (2010) Dyeing materials used for a Mediterranean Carpet and a traditional Greek child costume around 1900. Dyes in history & archaeology—DHA 29, Lisbon, Spain, Poster pp 78–79Google Scholar
  137. 137.
    Fabbri D, Chiavari G, Ling H (2000) Analysis of anthraquinoid and indigoid dyes used in ancient artistic works by thermally assisted hydrolysis and methylation in the presence of tetramethylammonium hydroxide. J Anal Appl Pyrolysis 56(2):167–178CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Turkan Yurdun
    • 1
  • Emre Dolen
    • 2
  • Recep Karadag
    • 3
    • 4
  • Carole Mathe
    • 5
  • Andreas K. Tsakalof
    • 6
  • Kyriaki A. Bairachtari
    • 7
  • Evangelia A. Varella
    • 8
  • A. Spinella
    • 9
  • D. Capitani
    • 10
  • S. Bastone
    • 9
  • C. Di Stefano
    • 11
  • E. Caponetti
    • 9
    • 12
  • Eleni Pavlidou
    • 13
  • Maria Kyranoudi
    • 14
  • Leopold Puchinger
    • 15
  • Friedrich Sauter
    • 16
  • Andreas Gössl
    • 15
  1. 1.Department of Pharmaceutical Toxicology, Faculty of PharmacyMarmara UniversityHaydarpasa-IstanbulTurkey
  2. 2.Department of Analytical Chemistry, Faculty of PharmacyMarmara UniversityHaydarpasa-IstanbulTurkey
  3. 3.Laboratory of Natural Dyes, Faculty of Fine ArtsMarmara UniversityIstanbulTurkey
  4. 4.Turkish Cultural Foundation, Natural Dyes Research and Development LaboratoryIstanbulTurkey
  5. 5.Laboratoire de chimie appliquée à l’Art et à l’ArchéologieUniversité d’AvignonAvignonFrance
  6. 6.School of MedicineUniversity of ThessalyLarissaGreece
  7. 7.National Center of Scientific Research “Demokritos”Institute of Nuclear Technology & Radiation ProtectionAthensGreece
  8. 8.Department of ChemistryAristotle University of ThessalonikiThessalonikiGreece
  9. 9.Centro Grandi Apparecchiature (CGA) UniNetLabUniversità degli Studi di PalermoPalermoItaly
  10. 10.Laboratorio di Risonanza Magnetica “Annalaura Segre”Istituto di Metodologie Chimiche CNRMonterotondoItaly
  11. 11.Centro Regionale per la Progettazione e il Restauro (CRPR)PalermoItaly
  12. 12.Dipartimento di Chimica “S. Cannizzaro” Parco d’Orleans IIUniversità degli Studi di PalermoPalermoItaly
  13. 13.Department of Physics, School of ScienceAristotle University of ThessalonikiThessalonikiGreece
  14. 14.Conservation Department, Archaelogical Museum of Amphipolis, KH Ephorate of Prehistoric and Classical AntiquitiesHellenic Ministry of CultureAmphipolisGreece
  15. 15.Institute of Chemical EngineeringVienna University of TechnologyViennaAustria
  16. 16.Institute of Applied Synthetic ChemistryVienna University of TechnologyViennaAustria

Personalised recommendations