Identification Techniques II

  • Giovanni Ettore Gigante
  • Stefano Ridolfi
  • Michele A. Floriano
  • Eugenio Caponetti
  • Lorenzo Gontrani
  • Ruggero Caminiti
  • Maria Luisa Saladino
  • Delia Chillura Martino
  • Nick Schiavon
  • Cristina Dias Barrocas
  • Teresa Ferreira
  • K. Chrysafis
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 79)

Abstract

An overview of applications of Small Angle X-ray Scattering (SAXS) techniques to topics of interest in the field of Cultural Heritage is presented. The basic concepts of the technique, a description of sources and laboratory instrumentation and some models and methods for data analysis are discussed. Applications of SAXS to various kinds of materials are reported to obtain information on the structure useful to shed light in some subjects such as preparation, physical treatment, traceability and degradation of materials.

Keywords

Differential Thermal Analysis Inductively Couple Plasma Mass Spectrometry Atomic Absorption Spectroscopy Cultural Heritage Rutherford Backscatter Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berger MJ, Hubbell JH (1978) XCOM: photon cross sections on a personal computer. US Department of Commerce, NBSIR, vol 87, pp 3597Google Scholar
  2. 2.
    Cesareo R, Gigante GE, Castellano A, Iwanczyk I (2000) Portable systems for energy dispersive X-ray fluorescence analysis: encyclopedia of chemistry. Wiley, ChichesterGoogle Scholar
  3. 3.
    Cesareo R (1998) Photon induced X-ray emission. In: Cesareo R (ed) Nuclear analytical techniques in medicine. Elsevier, Amsterdam, pp 19–121Google Scholar
  4. 4.
    Van Grieken R, Markowicz A (ed) (2001) Handbook of X-ray spectrometry revised and expanded. CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Cesareo R, Gigante GE (1998) Non destructive analysis of ancient metal alloys by in situ EDXRF transportable equipment. Radiat Phys Chem 51(4–6):689–700Google Scholar
  6. 6.
    Cesareo R, Brunetti A, Ridolfi S (2008) Pigment layers and precious metal sheets be EDXRF-analysis. X-ray Spectrom 37:309–316Google Scholar
  7. 7.
    Cesareo R et al (2010) Pre-columbian alloys from the royal tombs of Sipan analyzed with a portable EDXRF equipment. Appl Radiat Isot 68:525–528Google Scholar
  8. 8.
    Diana M, Gabrielli N, Ridolfi S (2007) Sulphur determination on stone monuments with a transportable EDXRF system. X-ray Spectrom 36(6):424–428 Google Scholar
  9. 9.
    Kockelmann W, Pantos E, Kirfel A (2000) In: Creagh DC, Bradley DA (eds) Radiation in art and archeometry. Elsevier, Amsterdam, p 347 Google Scholar
  10. 10.
    Kockelmann W, Kirfel A, Haehnel E (2001) Non-destructive phase analysis of archaeologiocal ceramics using TOF neutron diffraction. J Archaeol Sci 28:213Google Scholar
  11. 11.
    Siano S, Kockelmann W, Bafile U, Celli M, Iozzo M, Miccio M, Moze O, Pini R, Salimbeni R, Zoppi M (2002) Quantitative multiphase analysis of archaeological bronzes by neutron diffraction. Appl Phys A Mater Sci Process 74:1139Google Scholar
  12. 12.
    Siano S, Kockelmann W, Bafile U, Celli M, Iozzo M, Miccio M, Moze O, Pini R, Salimbeni R, Zoppi M (2002) Quantitative multiphase analysis of archaelogical bronzes by neutron diffraction. Appl Phys A 74:1139Google Scholar
  13. 13.
    Siano S, Bartoli L, Kockelmann W, Zoppi M, Miccio M (2004) Neutron metallography of archaeological bronzes. Phys B Condens Matter 350:123–126Google Scholar
  14. 14.
    Artioli G (2007) Small angle neutron scattering investigation of microporosity in marbles. Appl Phys A 74(Suppl 1):s1066–s1068. doi: 10.1007/s003390201679 Google Scholar
  15. 15.
    Barilaro D, Crupi V, Majolino D, Venuti V, Barone G, Kockelmann W (2007) Neutrons as probe of large volume specimen: the case of archaeological pottery findings. J Archaeol Sci 34:1148–1152. doi: 10.1016/j.jas.2006.10.024 Google Scholar
  16. 16.
    Bartoli L, Aliotta F, Imberti S, La Torre G, Ponterio R, Toscano Raffa A, Vasi C, Zoppi M (2009) Time-of-flight neutron diffraction characterization of ceramic findings from Southern and Western Sicily. Archaeometry 51:568–575. doi: 10.1111/j.1475-4754.2008.00425.x Google Scholar
  17. 17.
    Siano S, Bartoli L, Santisteban JR, Kockelmann W, Daymond MR, Miccio M, De Marinis G (2006) Non-destructive investigation of bronze artefacts from the marches national museum of archaeology using neutron diffraction. Archaeometry 48:77–96. doi: 10.1111/j.1475-4754.2006.00244.x Google Scholar
  18. 18.
    Dillmann Ph, Mazaudier F, Hoerlè S (2004) Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion. Corros Sci 46:1401–1429. doi: 10.1016/j.corsci.2003.09.027 Google Scholar
  19. 19.
    Fermo P, Cariati F, Cipriani C, Canetti M, Padeletti G, Brunetti B, Sgamellotti A (2002) The use of small angle X-ray scattering (SAXS) for the characterisation of lustre surfaces in Renaissance majolica. Appl Surf Sci 185:309–316. doi: 10.1016/S0169-4332(01)00984-9 Google Scholar
  20. 20.
    Kuczumow A, Pikus S, Un-Ro C, Sadowski P, Wajnberg P, Jurek M (2001) Structural investigations of a series of petrified woods of different origin. Spectrochimica Acta B 56:339–350Google Scholar
  21. 21.
    Kennedy CJ, Vest M, Cooper M, Wess TJ (2004) The use of small-angle X-ray scattering to study archaeological and experimentally altered bone. Appl Surf Sci 227:151–163. doi: 10.1016/j.apsusc.2003.11.057 Google Scholar
  22. 22.
    Hiller JC, Wess TJ (2006) The use of small-angle X-ray scattering to study archaeological and experimentally altered bone. J Arch Sci 33:560–572Google Scholar
  23. 23.
    Wess TJ, Drakopoulos M, Snigirev A, Wouters J, Paris O, Fratzl P, Collins M, Hiller J, Nielsen K (2001) The use of small angle X-ray diffraction studies for the analysis of structural features in archaeological samples. Archaeometry 43:117–129Google Scholar
  24. 24.
    Triolo R, Lo Celso F, Benfante V, Gorgoni C, Barker J, Butler P, Ruffo I (2007) Fingerprinting white marbles of archaeometric interest by means of combined SANS and USANS. Nuovo Cimento Soc Ital Fis C 30:129–138. doi: 10.1393/ncc/i2006-10038-6 Google Scholar
  25. 25.
    Anovitz LM, Lynn GW, Cole DR, Rother G, Allard LF, Hamilton WA, Porcar L, Kim M-H (2009) A new approach to quantification of metamorphism using ultra-small and small angle neutron scattering. Geochimica et Cosmochimica Acta 73:7303–7324. doi: 10.1016/j.gca.2009.07.040 Google Scholar
  26. 26.
    Guinier A (1939) La Diffraction des Rayons X aux Très Faibles Angles: Applications à l’Etude des Phénomènes Ultra-microscopiques. Ann Phys 12:161–236Google Scholar
  27. 27.
    Guinier A, Fournet G (1955) Small angle scattering of X-rays. Wiley, New YorkGoogle Scholar
  28. 28.
    Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, LondonGoogle Scholar
  29. 29.
    Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 34:247–254OGoogle Scholar
  30. 30.
    Pèrez-Arantegui J, Molera J, Larrea A, Pradell T, Vendrell-Saz M, Borgia I, Brunetti B, Cariati F, Fermo P, Mellini M, Sgamellotti A, Viti C (2001) Luster pottery from the thirteenth century to the sixteenth century: a nanostructured thin metallic film. J Am Ceram Soc 84:442–446. doi: 10.1111/j.1151-2916.2001.tb00674.x Google Scholar
  31. 31.
    Hosemann R, Bagchi SN (1962) Direct analysis of diffraction by matter. North-Holland Publishing Co., AmsterdamGoogle Scholar
  32. 32.
    Brunberger H (1965) Small angle X-ray scattering. Gordon and Breach, Science Publishers, New YorkGoogle Scholar
  33. 33.
    Chillura Martino D, Saladino ML, Nasillo G, Piga G, Enzo S, Caponetti E. J Appl Cryst (Submitted) Google Scholar
  34. 34.
    Axelos MAV, Tchoubar D, Bottero JY (1989) Small-angle X-ray scattering investigation of the silica/water interface: evolution of the structure with pH. Langmuir 5:1186–1190. doi: 10.1021/la00089a010 Google Scholar
  35. 35.
    Fratzl P, Groschner M, Vogl G, Plenk H Jr, Escheberger J, Fratzl-Zelman N, Koller K, Klaushofer K (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res 7:329–334Google Scholar
  36. 36.
    Fratzl P, Gupta HS, Paris O, Valenta A, Roschger P, Klaushofer K (2005) Diffracting ‘‘stacks of cards’’—some thoughts about small-angle scattering from bone. Prog Colloid Polym Sci 130:33–39. doi: 10.1007/b107343 Google Scholar
  37. 37.
    Hiller JC, Collins MJ, Chamberlain AT, Wess TJ (2004) Small-angle X-ray scattering: a high-throughput technique for investigating archaeological bone preservation. J Archaeol Sci 31:1349–1359Google Scholar
  38. 38.
    Entwistle KM, Terril NJ (2000) The measurements of the micro-fibril angle in soft wood. J Mater Sci 35:1675–1684. doi: 10.1023/A:1004755913978 Google Scholar
  39. 39.
    Beaucage G (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Crystallogr 28:717–728Google Scholar
  40. 40.
    Beaucage G (1996) Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J Appl Crystallogr 29:134–146Google Scholar
  41. 41.
    Botti A, Ricci MA, De Rossi G, Kockelmann W, Sodo A (2006) A Methodological aspects of SANS and TOF neutron diffraction measurements on pottery: the case of Miseno and Cuma. J Archaeol Sci 33:307–319. doi: 10.1016/j.jas.2005.06.016 Google Scholar
  42. 42.
    Barone G, Crupi V, Longo F, Majolino D, Mazzoleni P, Venuti V (2011) Characterisation of archaeological pottery: the case of ‘‘Ionian Cups’’. J Mol Struct 993:142–146. doi: 10.1016/j.molstruc.2011.01.028 Google Scholar
  43. 43.
    Teixeira J (1988) Small-angle scattering by fractal systems. J Appl Crystallogr 21:781–785. doi: 10.1107/S0021889888000263 Google Scholar
  44. 44.
    Ballirano P, Caracciolo G, Sadun C, Caminiti R (2008) The use of energy dispersive X-ray diffraction (EDXD) for the investigation of the structural and compositional features of old and modern papers. Microchem J 88:107–112. doi: 10.1016/j.microc.2007.11.007 Google Scholar
  45. 45.
    Chiari G, Giordano A, Menges G (1996) Non-destructive X-Ray diffraction analyses of non-prepared samples. Sci Technol Cult Herit 5(1):21–36Google Scholar
  46. 46.
    Vittiglio G, Bichlmeier S, Klinger P, Heckel J, Fuzhong W, Vincze L, Janssens K, Engström P, Rindby A, Dietrich K, Jembrih-Simbürger D, Schreiner M, Denis D, Lakdar A, Lamotte A (2004) A compact μ-XRF spectrometer for (in situ) analyses of cultural heritage and forensic materials. Nucl Instrum Method B 213:693–698. doi: 10.1016/S0168-583X(03)01687-2 Google Scholar
  47. 47.
    Johansson SAE, Campbell JL, Malmqvist KG (1995) Particle-induced X-ray emission spectrometry (PIXE). Wiley, New YorkGoogle Scholar
  48. 48.
    Jembrih D, Neelmeijer C, Schreiner M, Mäder M, Ebel M, Svagera R, Peev M (2001) Iridescent Art Nouveau glass—IBA and XPS for the characterization of thin iridescent layers. Nucl Instrum Method B 181:698–702. doi: 10.1016/S0168-583X(01)00598-5 Google Scholar
  49. 49.
    Wess TJ, Drakopoulos M, Snigirev A, Wouters J, Paris O, Fratzl P, Collins M, Hiller J, Nielsen K (2001) The use of small angle X-ray diffraction studies for the analysis of structural features in archaeological samples. Archaeometry 43:117–129Google Scholar
  50. 50.
    Giessen BC, Gordon GE (1968) X-ray diffraction: new high-speed technique based on X-ray spectrography. Science 159:973–975. doi: 10.1126/science.159.3818.973-a Google Scholar
  51. 51.
    Ballirano P, Caminiti R (2001) Rietveld refinements on laboratory Energy dispersive X-ray diffraction (EDXD) data. J Appl Crystallogr 34:757–762Google Scholar
  52. 52.
    Caminiti R, Rossi AV (1999) The kinetics of phase transitions observed by energy-dispersive X-ray diffraction. Int Rev Phys Chem 18:263–299Google Scholar
  53. 53.
    Prober JM, Schultz J (1975) Liquid-structure analysis by energy-scanning X-ray diffraction: mercury. J Appl Crystallogr 8:405–414. doi: 10.1107/S0021889875010898 Google Scholar
  54. 54.
    Tokarski C, Cren-Olivè C, Rolando C, Martin E (2003) Protein studies in cultural heritage. In: Seiz-Jimenez C (eds) Molecular biology and cultural heritage. Taylor e Francis, LondonGoogle Scholar
  55. 55.
    Caponetti E, Caminiti R, Chillura Martino D, Saladino ML (2007) Energy dispersive X-ray diffraction potentiality in the field of Cultural Heritage: simultaneous structural and elemental analysis of various artefacts. Ann Chim-Sci Mat 97:473–490Google Scholar
  56. 56.
    Caminiti R, Portale G (2004) Analisi delle policromie in frammenti Pesaresi e Faentini mediante Fluorescenza X. In: Ciaroni A (ed) Maioliche del Quattrocento a Pesaro.Frammenti di storia dell’arte ceramica dalla bottega dei fedeli. Centro di Firenze– in italian, pp 255–258Google Scholar
  57. 57.
    Colombo C, Bracci S, Conti C, Greco M, Realini M (2011) Non-invasive approach in the study of polychrome terracotta sculptures: employment of the portable XRF to investigate complex stratigraphy. X-Ray Spectrom 40:273–279. doi: 10.1002/xrs.1336 Google Scholar
  58. 58.
    Rosi F, Miliani C, Borgia I, Brunetti B, Sgamellotti A (2004) Identification of nineteenth century blue and green pigments by in situ X-ray fluorescence and micro-Raman spectroscopy. J Raman Spectrosc 35:610–615. doi: 10.1002/jrs.1180 Google Scholar
  59. 59.
    Beckhoff B, Langhoff N, Kanngiefer B, Wedell R, Wolff H (2006) Handbook of practical X-ray fluorescence analysis. Springer, BerlinGoogle Scholar
  60. 60.
  61. 61.
    Artioli G (2010) Scientific methods in cultural heritage. Oxford University Press, OxfordGoogle Scholar
  62. 62.
    Verma HR (2007) Atomic and nuclear analytical methods. Springer, BerlinGoogle Scholar
  63. 63.
    Demortier G (2005) Ion beam techniques for the non-destructive analysis of archaeological materials. In: Uda M, Demortier G, Nakai I (eds) X-rays for archaeology. Springer, BerlinGoogle Scholar
  64. 64.
    Salomon J, Dran JC, Guillou T, Moignard B, Pichon L, Walter P, Mathis F (2008) Ion-beam analysis for cultural heritage on the AGLAE facility: impact of PIXE/RBS combination. Appl Phys A 92:43–50Google Scholar
  65. 65.
    Mahnke H, Denker A, Salomon J (2009) Accelerators and X-rays in cultural heritage investigations. Comptes Rendues Phys 10(7):660–675Google Scholar
  66. 66.
    Roumié M, Waksman SY, Nsouli B, Reynolds P, Lemaître S (2004) Use of PIXE analysis technique for the study of Beirut amphora production in the Roman period. Nucl Instrum Meth Phys Res B215:196–202Google Scholar
  67. 67.
    Schiavon N, Candeias A, Ferreira T, Conceiçao Lopes M, Carneiro A, Calligaro T, Mirao J (in press) A combined multi-analytical approach for the study of Roman Glass from Southwest Iberia: Synchrotron μ-XRF, external-PIXE/PIGE and VP-BSEM-EDS. Archaeometry Google Scholar
  68. 68.
    Guerra F (2005) Trace elements fingerprinting using accelerators and ICP-MS: circulation of gold from the 6th century BC to the 12th century AD. In: Van Grieken R, Janssens J (eds) Cultural heritage conservation and environmental impact assessment by non destructive testing and micro-analysis. Taylor and Francis Group, LondonGoogle Scholar
  69. 69.
    Spoto G, Torrisi A, Contino A (2000) Probing archaeological and artistic solid materials by spatially resolved analytical techniques. Chem Soc Rev 29:429–439Google Scholar
  70. 70.
    Zucchiatti A, Prati P, Bouquillon A, Giuntini L, Massi M, Migliori A, Cagnana A, Roascio S (2004) Characterization of early medieval frescoes by μ-PIXE, SEM and Raman spectroscopy. Nucl Instrum Meth Phys Res B 219:20–25Google Scholar
  71. 71.
    Constantinescu B, Bugoi R, Cojocaru V, Radtke M, Calligaro T, Salomon J, Pichon L, Röhrs S, Ceccato D, Eberländer-Tarnoveanu E (2008) Micro-SR-XRF and micro-PIXE studies for archaeological gold identification-the case of Carpathian (Transylvanian) gold and of Dacian bracelets. Nucl Instrum Meth Phys Res B 266:2325–2328Google Scholar
  72. 72.
    Ortega-Feliu I, Gómez-Tubio B, Respaldiza MA, Capel F (2011) Red layered medieval stained glass window characterization by means of micro-PIXE. Nucl Instrum Meth Phys Res. doi: 10.1016/j.nimb.2011.02.023
  73. 73.
    Gersch HK, Robertson JD, Henderson AG, Pollack D, Munson CA (1998) PIXE analysis of prehistoric and proto-historic Caborn-Welborn phase copper artifacts from the lower Ohio River Valley. J Radioan Nucl Chem 234:85–90Google Scholar
  74. 74.
    Zhang B, Li YH, Li QH, Ma B, Gan FX, Zhang ZQ, Cheng HS, Yang FJ (2004) Non destructive analysis of early glass unearthed in south China by external beam PIXE. J Radioan Nucl Chem 261:387–392Google Scholar
  75. 75.
    Ruvalcada Sil JL (2005) PIXE analysis of pre-hispanic items from ancient America. In: Uda M, Demortier G, Nakai I (eds) X-rays for archaeology. Springer, BerlinGoogle Scholar
  76. 76.
    Sokaras D, Karydas AG, Oikonomou A, Zacharias N, Beltios K, Kantarelou V (2009) Combined elemental analysis of ancient glass beads by means of ion beam, portable XRF and EPMA techniques. Anal Bioanal Chem 395:2199–2209Google Scholar
  77. 77.
    Gómez-Tubio B, Ontalba Salamanca MA, Ortega-Feliu I, Respaldiza MA, Amores Carredano F, Gonzalez-Acuña D (2006) PIXE-PIGE analysis of late Roman glass fragments. Nucl Instrum Meth Phys Res B 249:616–621Google Scholar
  78. 78.
    Weber G, Strivay D, Martinot L, Garnir HP (2002) Use of PIXE-PIGE under variable incident angle for ancient glass corrosion measurements. Nucl Instrum Meth Phys Res B 189:350–357Google Scholar
  79. 79.
    Mäder M, Neelmeijer C (2004) Proton beam examination of glass-an analytical contribution for preventive glass conservation. Nucl Instrum Meth Phys Res B 226:110–118Google Scholar
  80. 80.
    Neelmeijer C, Mäder M (2005) Endangered glass objects identified by ion beam analysis. In: Van Grieken R, Janssens J (eds) Cultural heritage conservation and environmental impact assessment by non destructive testing and micro-analysis. Taylor and Francis Group, LondonGoogle Scholar
  81. 81.
    Climent-Font A, Muñoz-Martin A, Ynsa MD, Zucchiatti A (2008) Quantification of sodium in ancient Roman glasses with ion beam analysis. Nucl Instrum Meth Phys Res B 266:640–648Google Scholar
  82. 82.
    Ruvalcaba-Sil JL, Manzanilla L, Melgar M, Lozano Santa Cruz R (2008) PIXE and iono-luminescence for Mesoamerican jadeite characterization. X-Ray Spectrom 37:96–99Google Scholar
  83. 83.
    Calligaro T (2005) The origin of ancient gemstones unveiled by PIXE, PIGE and μ-Raman spectrometry. In: Uda M, Demortier G, Nakai I (eds) X-rays for archaeology. Springer, BerlinGoogle Scholar
  84. 84.
    Calligaro T, Dran JC, Poirot JP, Querré G, Salomon J, Zwaan JC (2000) PIXE-PIGE characterization of emeralds using an external micro-beam. Nucl Instrum Meth Phys Res B 161–163:769–774Google Scholar
  85. 85.
    Bourgarit D, Plateau J (2005) Quand l’aluminium valait de l’or: peut-on reconnaitre un aluminium “chimique” d’un aluminium “electrolytique”? Revue d’ArcheoSciences 29:95–105Google Scholar
  86. 86.
    Guerra MF (2004) Fingerprinting ancient gold with proton beams of different energy. Nucl Instrum Meth Phys Res B 226:185–198Google Scholar
  87. 87.
    Demortier G (2004) Precious metals and artifacts. In: Janssens K, Van Grieken R (eds) Non destructive micro-analysis of cultural heritage materials. Elsevier, AmsterdamGoogle Scholar
  88. 88.
    Sonck-Koota P, Lindroos A, Lill JO, Rajander J, Viitanen EM, Marra F, Pehkonen MH, Suksi J, Heselius SJ (2008) External-beam PIXE characterization of volcanic material used in ancient Roman mortars. Nucl Instrum Meth Phys Res B 266:2367–2370Google Scholar
  89. 89.
    Santos Silva A, Cruz T, Paiva MJ, Candeias A, Adriano P, Schiavon N, Mirão JAP (2011) Mineralogical and chemical characterization of historical mortars from military fortifications in Lisbon harbour (Portugal). Environ Earth Sci 63:1641–1650Google Scholar
  90. 90.
    Zucchiatti A, Pascual C, Ynsa MD, Castelli L, Recio P, Criado E, Valle FJ, Climent-Font A (2008) Compositional analysis of XVIII century glazed, polychrome layered porcelain by non destructive micro α-PIXE. J Eur Ceram Soc 28:757–762Google Scholar
  91. 91.
    Sha Y, Zhang PQ, Wang GG, Zhang XJ, Wang X, Liu J (2005) Compositional differences of blue and white porcelain analyzed external beam PIXE. In: Uda M, Demortier G, Nakai I (eds) X-rays for archaeology. Springer, BerlinGoogle Scholar
  92. 92.
    Calligaro T, Dran JC, Dubernet S, Poupeau G, Gendron F, Gonthier E, Meslay O, Tenorio D (2005) PIXE reveals that two Murillo’s masterpieces were painted on Mexican obsidian slabs. Nucl Instrum Meth Phys Res B 240:576–582Google Scholar
  93. 93.
    Schiavon N, Zhou LP (1996) Magnetic, chemical and microscopic characterization of urban soiling on historical monuments. Environ Sci Technol 30:3624–3629Google Scholar
  94. 94.
    Nava S, Becherini F, Bernardi A, Bonazza A, Chiari M, Lucarelli F, Garcia-Orellana I, Ludwig N, Migliori A, Sabbioni C, Udisti R, Valli G, Vecchi R (2010) An integrated approach to assess air pollution threats to cultural heritage in a semi-confined environment: the case study of Michelozzo’s court yard in Florence (Italy). Sci Total Environ 408:1403–1413Google Scholar
  95. 95.
    Carmona N, Ortega-Feliu I, Gomez-Tubio B, Villegas MA (2010) Advantages and disadvantages of PIXE/PIGE, XRF and EDX spectrometries applied to archaeometric characterization of glasses. Mater Charact 61:257–267Google Scholar
  96. 96.
    Skoog DA, Holler FJ, Nieman TA (1998) Principles of instrumental analysis, 5th edn. Harcourt Brace & Company, PhiladelphiaGoogle Scholar
  97. 97.
    Harris DC (2007) Quantitative chemical analyis, 7th edn. W.H. Freeman & Company, New YorkGoogle Scholar
  98. 98.
    Lajunen LHJ (1992) Spectrochemical analysis by atomic absorption and emission. The Royal Society of Chemistry, CambridgeGoogle Scholar
  99. 99.
    Cresser MS (1994) Flame spectrometry in environmental chemical analysis: a practical guide. The Royal Society of Chemistry, CambridgeGoogle Scholar
  100. 100.
    Sneddon J (1997) Atomic absorption spectroscopy. In: Settle FA (ed) Handbook of instrumental techniques for analytical chemistry. Prentice Hall, LondonGoogle Scholar
  101. 101.
    Ebdon L, Evans EH, Fisher AS, Hill SJ, Evans EH (1998) An introduction to analytical atomic spectrometry. Wiley, ChichesterGoogle Scholar
  102. 102.
    Artioli G (2010) Scientific methods and cultural heritage, an introduction to the application of materials science to archaeometry and conservation science. Oxford University Press, OxfordGoogle Scholar
  103. 103.
    Hjulström B, Isaksson S (2009) Identification of activity area signatures in a reconstructed Iron Age house by combining element and lipid analyses of sediments. J Archaeol Sci 36:174–183Google Scholar
  104. 104.
    Boguckyj AB, Łanczont M, Łącka B, Madeyska T, Sytnyk O (2009) Age and the palaeoenvironment of the West Ukrainian palaeolithic: the case of VelykyiGlybochokmulti-cultural site. J Archaeol Sci 36:1376–1389Google Scholar
  105. 105.
    Rasmussen KL, Bjerregaard P, Gommesen PH, Jensen OL (2009) Arsenic in Danish and Swedish Mesolithic and Neolithic human bones—diet or diagenesis? J Archaeol Sci 36(2009):2826–2834Google Scholar
  106. 106.
    Mangone A, Giannossa LC, Laganara C, Laviano R, Traini A (2009) Manufacturing expedients in medieval ceramics in Apulia. J Cult Herit 10:134–143Google Scholar
  107. 107.
    Shingleton KL, Odell GH, Harris TM (1994) Atomic absorption spectrometry analysis of ceramics from a protohistoric site in Oklahoma. J Archaeol Sci 21:343–358Google Scholar
  108. 108.
    Mangone A, Giannossa LC, Ciancio A, Laviano R, Traini A (2008) Technological features of Apulian red figured pottery. J Archaeol Sci 35:1533–1541Google Scholar
  109. 109.
    Matović V, Erić S, Kremenović A, Colomban P, Srećković-Batoćanin D, Matović N (2011) The origin of syngenite in black crusts on the limestone monument King’s Gate (Belgrade Fortress, Serbia)—the role of agriculture fertilizer. J Cult Herit Google Scholar
  110. 110.
    Manzano E, Bueno AG, Gonzalez-Casado A, Olmoa M (2000) Mortars, pigments and binding media of wall paintings in the ‘Carrera del Darro’ in Granada, Spain. J Cult Herit 1:19–28Google Scholar
  111. 111.
    Kleina S, Hauptmann A (1999) Iron age leaded Tin Bronzes from Khirbet Edh-Dharih, Jordan. J Archaeol Sci 26:1075–1082Google Scholar
  112. 112.
    Rezić I, Ćurković L, Ujević M (2010) Simplemethods for characterizationofmetals in historicaltextilethreads. Talanta 82:237–244Google Scholar
  113. 113.
    Manhita A, Ferreira V, Vargas H, Ribeiro I, Candeias A, Teixeira D, Ferreira T, Barrocas-Dias C (2011) Enlightening the influence of mordant, dyeing technique and photodegradation on the colour hue of textiles dyed with madder—a chromatographic and spectrometric approach. Microchem J 98:82–90Google Scholar
  114. 114.
    Degryse P, Schneider J, Poblome J, Waelkens M, Haack U, Muchez P (2005) A geochemical study of Roman to early Byzantine Glass from Sagalassos, South-west Turkey. J Archaeol Sci 32:287–299Google Scholar
  115. 115.
    Degryse P, Schneider J, Haack U, Lauwers V, Poblome J, Waelkens M, Muchez P (2006) Evidence for glass ‘recycling’ using Pb and Sr isotopic ratios and Sr-mixing lines: the case of early Byzantine Sagalassos. J Archaeol Sci 33:494–501Google Scholar
  116. 116.
    Pollard AM, Batt CM, Stern B, Young SMM (2007) Analytical chemistry in archaeology. Cambridge University Press, CambridgeGoogle Scholar
  117. 117.
    Stuart BH (2007) Analytical techniques in materials conservation. Wiley, ChichesterGoogle Scholar
  118. 118.
    Vigil de la Villa R, Garcia Gimenez R, Petit Domınguez MD, Rucandio MI (2003) Physicochemical and Chemometric Characterisation of Late Roman Amphorae from Straits of Gibraltar. Microchim Acta 142:115–122Google Scholar
  119. 119.
    Sanchez-Ramos S, Bosch Reig F, Gimeno Adelantado JV, YusaMarco DJ, DomenechCarbo A (2002) Study and dating of medieval ceramic tiles by analysis of enamels with atomic absorption spectroscopy, X-ray fluorescence and electron probe microanalysis. Spectrochim Acta B 57:689–700Google Scholar
  120. 120.
    Kneisel EA, Ciszkowsky NA, Bowyer WJ, Walker FS, Huntsberger TG, Foust RD (1997) Identifying clay sources of prehistoric pottery using atomic spectroscopy. Microchem J 56:40–46Google Scholar
  121. 121.
    Sweevers H, Peeters A, Van Grieken R (1995) Weathering of Leinster granite under ambient atmospheric conditions. Sci Total Environ 167:73–85Google Scholar
  122. 122.
    Zamudio TJ, Garrido-Alfonseca A, Tenorio D, Jimenez-Reyes M (2003) Characterization of 16th and 18th century building materials from Veracruz City, Mexico. Microchem J 74:83–91Google Scholar
  123. 123.
    Goidanich S, Toniolo L, Jafarzadeh S, Odnevall Wallinder I (2010) Effects of wax-based anti-graffiti on copper patina composition and dissolution during four years of outdoor urban exposure. J Cult Herit 11:288–296Google Scholar
  124. 124.
    Goidanich S, Brunk J, Herting G, Arenas MA, Odnevall Wallinder I (2011) Atmospheric corrosion of brass in outdoor applications: patina evolution, metal release and aesthetic appearance at urban exposure conditions. Sci Total Environ (in press)Google Scholar
  125. 125.
    Bernardi E, Chiavari C, Lenza B, Martini C, Morselli L, Ospitali F, Robbiola L (2009) The atmospheric corrosion of quaternary bronzes: the leaching action of acid rain. Corros Sci 51:159–170Google Scholar
  126. 126.
    Limnow K, Halsberghe L, Steiger M (2007) Analysis of calcium acetate efflorescences formed on ceramictiles in a museum environment. J Cult Herit 8:44–52Google Scholar
  127. 127.
    Perry SH, Duffy AP (1997) The short term effects of mortar joints on salt movement in stone. Atmospheric Environ 31:1297–1305Google Scholar
  128. 128.
    Schiavon N (2003) Microfabrics of weathered granite in urban monuments. In: Thiel MJ (ed) Conservation of stone and other materials. E & FN Spon, London, pp 271–278Google Scholar
  129. 129.
    Schiavon N, Chiavari G, Schiavon G, Fabbri D (1995) Nature and decay effects of urban soiling on granitic building stones. Sci Total Environ 167:87–101Google Scholar
  130. 130.
    Schiavon N, Zhou L (1996) Magnetic, chemical and microscopical characterization of urban soiling on historical monuments. Environ Sci Technol 30(12):3624–3629Google Scholar
  131. 131.
    Brimblecombe P, Camuffo D (2003) Long-term damage to the built environment. In: Brimblecombe P (ed) The effects of air pollution on the built environment. Imperial College Press, London, pp 1–30Google Scholar
  132. 132.
    Saiz-Jimenez C (2004) Air pollution and cultural heritage. A.A. Balkema Publishers, LeidenGoogle Scholar
  133. 133.
    McAlister JJ, Smith BJ, Torok A (2008) Transition metals and water-soluble ions in deposits on a building and their potential catalysis of stone decay. Atmospheric Environ 42:7657–7668Google Scholar
  134. 134.
    Scott DA, Seeley NJ (1983) The examination of a pre-Hispanic gold chisel from Colombia. J Archaeol Sci 10:151–163Google Scholar
  135. 135.
    De Ryck I, VanBiezen E, Leyssens K, Adriaens A, S. Storme P, Adams F (2004) Study of tin corrosion: the influence of alloying elements. J Cult Herit 5:189–195Google Scholar
  136. 136.
    Schreiner MR, Prohaska I, Rendl J, Weigel C (1999) Leaching studies of potash-lime-soda glass with medieval glass composition. In: Tennent NH (ed) Conservation of glass and ceramic research, practice and training. James & James, London, pp 72–83Google Scholar
  137. 137.
    Angelini I, Artioli G, Bellintani P, Diella V, Gemmi M, Polla A, Rossi A (2004) Chemical analyses of Bronze Age glasses from Frattesina di Rovigo, Northern Italy. J Archaeol Sci 31:1175–1184Google Scholar
  138. 138.
    Biscontin G, Pellizon Birelli M, Zendri E (2002) Characterisation of binders employed in the manufacture of Venetian historical mortars. J Cult Herit 3:31–37 Google Scholar
  139. 139.
    Alvarez JI, Navarro I, Garcia Casado PJ (2000) Thermal, mineralogical and chemical studies of the mortars used in the cathedral of Pamplona (Spain). Thermochim Acta 365:177–187Google Scholar
  140. 140.
    Friolo KH, Ray AS, Stuart BH, Thomas PS (2005) Thermal analysis of heritage stones. J Therm Anal Calorim 80:559–563Google Scholar
  141. 141.
    Riontino C, Sabbioni C, Ghedini N, Zappia G, Gobbi G, Favoni O (1998) Evaluation of atmospheric deposition on historic buildings by combined thermal analysis and combustion techniques. Thermochim Acta 321:215–222Google Scholar
  142. 142.
    Drebushchak VA, Mylnikova LN, Drebushchak TN, Boldyrev VV (2005) The investigation of ancient pottery. Application of thermal analysis. J Therm Anal Calorim 82:617–626Google Scholar
  143. 143.
    Campanella L, Flamini P, Grossi R, Tomassetti M (1998) Study and characterisation by thermoanalysis of statues and fictile finds of different historical and prehistoric ages. Thermochim Acta 321:167–174Google Scholar
  144. 144.
    Tomassetti M, Campanella L, Flamini P, Bandini G (1997) Thermal analysis of fictile votive statues of 3rd century BC. Thermochim Acta 291:117–130Google Scholar
  145. 145.
    Papadopoulou DN, Lalia-Kantouri M, Kantiranis N, Stratis JA (2006) Thermal and mineralogical contribution to the ancient ceramics and natural clays characterization. J Therm Anal Calorim 84:39–45Google Scholar
  146. 146.
    Odlyha M, Wang Q, Foster GM, Groot J, Horton M, Bozec L (2005) Thermal analysis of model and historic tapestries. J Therm Anal Calorim 82:627–636Google Scholar
  147. 147.
    Odlyha M, Cohen NS, Foster GM, Aliev A, Verdonck E, Grandy D (2003) Dynamic mechanical analysis (DMA), 13C solid state NMR and micro-thermomechanical studies of historical parchment. J Therm Anal Calorim 71:939–950Google Scholar
  148. 148.
    Fessas D, Schiraldi A, Tenni R, Vitellaro ZL, Bairati A, Facchini A (2005) Calorimetric, biochemical and morphological investigations to validate a restoration method of fire injured ancient parchment. Thermochim Acta 348:129–137Google Scholar
  149. 149.
    Della GG, Badea E, Ceccarelli R, Usacheva T, Masic A, Coluccia S (2005) Assessment of damage in old parchments by DSC and SEM. J Therm Anal Calorim 85:637–649Google Scholar
  150. 150.
    Franceschi E, Palazzi D, Pedemonte E (2001) Thermoanalytical contribution to the study of paper degradation. Characterisation of oxidised paper. J Therm Anal Calorim 66:349–358Google Scholar
  151. 151.
    Budrugeac P, Cucos A, Miu L. The use of thermal analysis methods for authentication and conservation state determination of historical and/or cultural objects manufactured from leather. J Therm Anal Calorim. doi: 10.1007/s10973-010-1183-0
  152. 152.
    Budrugeac P, Miu L, Popescu C, Wortmann F-J (2004) Identification of collagen-based materials that are supports of cultural and historical objects. J Therm Anal Calorim 77:975–985Google Scholar
  153. 153.
    Wiedemann H-G, Arpagaus E, Muller D, Marcolli C, Weigel S, Reller A (2002) Pigments of the bust of Nefertete compared with those of the Karnak Talatats. Thermochim Acta 382:239–247Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giovanni Ettore Gigante
    • 1
  • Stefano Ridolfi
    • 2
  • Michele A. Floriano
    • 3
  • Eugenio Caponetti
    • 3
    • 4
  • Lorenzo Gontrani
    • 5
  • Ruggero Caminiti
    • 6
  • Maria Luisa Saladino
    • 3
  • Delia Chillura Martino
    • 3
  • Nick Schiavon
    • 7
  • Cristina Dias Barrocas
    • 8
  • Teresa Ferreira
    • 8
  • K. Chrysafis
    • 9
  1. 1.Department of SBAISapienza University of RomeRomeItaly
  2. 2.ArsMensuraeRomeItaly
  3. 3.Dipartimento di Chimica “S. Cannizzaro”Università degli Studi di PalermoPalermoItaly
  4. 4.Centro Grandi Apparecchiature—UniNetLabUniversità degli Studi di PalermoPalermoItaly
  5. 5.Istituto di Struttura della MateriaConsiglio Nazionale delle RicercheRomeItaly
  6. 6.Dipartimento di ChimicaUniversità di RomaRomeItaly
  7. 7.Evora Geophysics Centre and Hercules Laboratory for the Study and Conservation of Cultural HeritageUniversity of EvoraEvoraPortugal
  8. 8.Evora Chemistry Centre and Hercules Laboratory for the Study and Conservation of Cultural HeritageUniversity of EvoraEvoraPortugal
  9. 9.Department of Physics, School of ScienceAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations